A203298 Second elementary symmetric function of the first n terms of (1,2,2,3,3,4,4,5,5...).
2, 8, 23, 47, 91, 151, 246, 366, 540, 750, 1037, 1373, 1813, 2317, 2956, 3676, 4566, 5556, 6755, 8075, 9647, 11363, 13378, 15562, 18096, 20826, 23961, 27321, 31145, 35225, 39832, 44728, 50218, 56032, 62511, 69351, 76931, 84911, 93710, 102950
Offset: 2
Keywords
Programs
-
Mathematica
f[k_] := Floor[(k + 2)/2]; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[2, t[n]] Table[a[n], {n, 2, 50}] (* A203298 *)
Formula
Empirical g.f.: x^2*(2 + 4*x + 3*x^2 - 3*x^3 - x^4 + x^5) / ((1 - x)^5*(1 + x)^3). - Colin Barker, Aug 15 2014
Conjectures from Colin Barker, Jan 04 2018: (Start)
a(n) = (6*n^4 + 40*n^3 + 48*n^2 - 112*n) / 192 for n even.
a(n) = (6*n^4 + 40*n^3 + 36*n^2 - 136*n + 54) / 192 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>9.
(End)