This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203307 #11 Aug 31 2023 02:56:20 %S A203307 1,12,672,161280,159989760,645078712320,10486399547473920, %T A203307 684552162459097497600,179100751368498596492083200, %U A203307 187617350297573441752474740326400,786539962489104046627462744981792358400 %N A203307 a(n) = v(n+1)/(2*v(n)), where v = A203305. %H A203307 G. C. Greubel, <a href="/A203307/b203307.txt">Table of n, a(n) for n = 1..50</a> %F A203307 a(n) = (1/2)*A028365(n) for n>0. %F A203307 a(n) = (-1)^n * 2^(binomial(n+1,2) - 1) * QPochhammer(2,2,n). - _G. C. Greubel_, Aug 31 2023 %t A203307 (* First program *) %t A203307 f[j_]:= 2^j - 1; z = 15; %t A203307 v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] %t A203307 Table[v[n], {n,z}] (* A203305 *) %t A203307 Table[v[n+1]/v[n], {n,z}] (* A028365 *) %t A203307 %/2 (* A203307 *) %t A203307 (* Second program *) %t A203307 Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n]/2, {n,20}] (* _G. C. Greubel_, Aug 31 2023 *) %o A203307 (Magma) [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]])/2: n in [1..20]]; // _G. C. Greubel_, Aug 31 2023 %o A203307 (SageMath) [product(2^(n+1) - 2^(k+1) for k in range(n))/2 for n in range(1,21)] # _G. C. Greubel_, Aug 31 2023 %Y A203307 Cf. A203305, A028365. %K A203307 nonn %O A203307 1,2 %A A203307 _Clark Kimberling_, Jan 01 2012