This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203312 #24 Nov 22 2023 09:44:06 %S A203312 1,3,147,298116,47460365316,965460013501733568, %T A203312 3717096745012192786213464768, %U A203312 3763515081241454304168766426610670649344,1329626784930718063722475681347135527472012731205697536 %N A203312 Vandermonde sequence using x^2 - xy + y^2 applied to (1,2,...,n). %C A203312 See A093883 for a discussion and guide to related sequences. %F A203312 a(n) ~ c * n^(n^2 - n - 2/3) / exp(3*n^2/2 - n*(n+1)*Pi/(2*sqrt(3)) - n), where c = Gamma(1/3) * 3^(1/12) * exp(Pi/(12*sqrt(3))) / (2^(4/3) * Pi^(4/3)) = 0.2945280196744096322469352538791946777977998766871923997662057483092872... - _Vaclav Kotesovec_, Nov 22 2023 %t A203312 f[j_] := j; z = 12; %t A203312 v[n_] := Product[Product[f[j]^2 - f[j] f[k] + f[k]^2, %t A203312 {j, 1, k - 1}], {k, 2, n}] %t A203312 Table[v[n], {n, 1, z}] (* A203312 *) %t A203312 Table[v[n + 1]/v[n], {n, 1, z}] (* A203513 *) %o A203312 (Python) %o A203312 from operator import mul %o A203312 from functools import reduce %o A203312 def v(n): return 1 if n==1 else reduce(mul, [j**2 - j*k + k**2 for k in range(2, n + 1) for j in range(1, k)]) %o A203312 print([v(n) for n in range(1, 11)]) # _Indranil Ghosh_, Jul 26 2017 %Y A203312 Cf. A203012, A203673, A367543. %K A203312 nonn %O A203312 1,2 %A A203312 _Clark Kimberling_, Jan 04 2012