cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203318 G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} Lucas(n*k)*x^(n*k)/k ) ) where Lucas(n) = A000032(n).

This page as a plain text file.
%I A203318 #12 Mar 30 2012 18:37:33
%S A203318 1,1,2,4,9,16,36,64,135,250,504,917,1864,3372,6593,12176,23473,42732,
%T A203318 82142,149282,283104,516780,967894,1757865,3291964,5959633,11039163,
%U A203318 20022457,36908442,66637739,122512809,220717328,403499293,726866565,1322670966,2376541137
%N A203318 G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} Lucas(n*k)*x^(n*k)/k ) ) where Lucas(n) = A000032(n).
%C A203318 Note: 1/(1-x-x^2) = exp(Sum_{n>=1} Lucas(n)*x^n/n) is the g.f. of the Fibonacci numbers.
%H A203318 Paul D. Hanna, <a href="/A203318/b203318.txt">Table of n, a(n) for n = 0..200</a>
%F A203318 G.f.: exp( Sum_{n>=1} A203319(n)*x^n/n ) where A203319(n) = n*fibonacci(n)*Sum_{d|n} 1/(d*fibonacci(d)).
%F A203318 G.f.: exp( Sum_{n>=1} (x^n/n) / (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) ) where Lucas(n) = A000032(n).
%F A203318 G.f.: exp( Sum_{n>=1} F_n(x^n) * x^n/n ) such that F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where F(x) = 1/(1-x-x^2) and u is an n-th root of unity.
%e A203318 G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 36*x^6 + 64*x^7 +...
%e A203318 G.f.: A(x) = exp( Sum_{n>=1} F_n(x^n) * x^n/n )
%e A203318 where F_n(x) = exp( Sum_{k>=1} Lucas(n*k)*x^k/k ), which begin:
%e A203318 F_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 13*x^6 + 21*x^7 +...;
%e A203318 F_2(x) = 1 + 3*x + 8*x^2 + 21*x^3 + 55*x^4 + 144*x^5 + 377*x^6 +...;
%e A203318 F_3(x) = 1 + 4*x + 17*x^2 + 72*x^3 + 305*x^4 + 1292*x^5 + 5473*x^6 +...;
%e A203318 F_4(x) = 1 + 7*x + 48*x^2 + 329*x^3 + 2255*x^4 + 15456*x^5 +...;
%e A203318 F_5(x) = 1 + 11*x + 122*x^2 + 1353*x^3 + 15005*x^4 + 166408*x^5 +...;
%e A203318 F_6(x) = 1 + 18*x + 323*x^2 + 5796*x^3 + 104005*x^4 + 1866294*x^5 +...;
%e A203318 ...
%e A203318 Also, F_n(x^n) = Product_{k=0..n-1} F(u^k*x) where u = n-th root of unity:
%e A203318 F_1(x) = F(x) = 1/(1-x-x^2) = g.f. of the Fibonacci numbers;
%e A203318 F_2(x^2) = F(x)*F(-x) = 1/(1-3*x^2+x^4);
%e A203318 F_3(x^3) = F(x)*F(w*x)*F(w^2*x) = 1/(1-4*x^3-x^6) where w = exp(2*Pi*I/3);
%e A203318 F_4(x^4) = F(x)*F(I*x)*F(-x)*F(-I*x) = 1/(1-7*x^4+x^8);
%e A203318 F_5(x^5) = 1/(1-11*x^5-x^10);
%e A203318 In general,
%e A203318 F_n(x^n) = 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).
%e A203318 ...
%e A203318 The logarithmic derivative of this sequence begins:
%e A203318 A203319 = [1,3,7,19,26,81,92,267,358,848,980,3061,3030,7976,...].
%o A203318 (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
%o A203318 {a(n)=polcoeff(exp(sum(m=1,n+1,(x^m/m)/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n)))),n)}
%o A203318 (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
%o A203318 {a(n)=local(L=vector(n+1, i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor((n+1)/m), Lucas(m*k)*x^(m*k)/k)+x*O(x^n))))); polcoeff(exp(x*Ser(vector(n+1, m, L[m]/m))), n)}
%o A203318 (PARI) {a(n)=local(A=1+x+x*O(x^n),F=1/(1-x-x^2+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(F, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); polcoeff(A, n)}
%Y A203318 Cf. A203319, A203320, A000032 (Lucas); A203413 (Pell variant).
%K A203318 nonn
%O A203318 0,3
%A A203318 _Paul D. Hanna_, Dec 31 2011