cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203373 Number of (n+1) X 4 0..1 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

108, 748, 5208, 36300, 253068, 1764360, 12301020, 85762188, 597930552, 4168748268, 29064349260, 202635502632, 1412766774396, 9849754525644, 68672102130648, 478779201937548, 3338029812632076, 23272612897409352
Offset: 1

Views

Author

R. H. Hardin, Dec 31 2011

Keywords

Comments

Column 3 of A203378.

Examples

			Some solutions for n=4:
..1..1..1..0....0..1..1..0....0..0..1..0....1..1..0..0....0..1..1..1
..0..1..1..1....1..1..0..1....0..0..0..1....0..1..1..0....0..0..1..1
..1..1..0..1....0..1..1..0....1..0..0..0....1..0..1..1....0..1..1..0
..1..0..1..1....1..1..1..1....0..1..0..1....0..0..0..1....1..0..1..1
..0..0..0..1....0..1..0..1....0..0..1..0....0..1..0..0....1..1..0..1
		

Crossrefs

Cf. A203378.

Formula

Empirical: a(n) = 9*a(n-1) -15*a(n-2) +6*a(n-3).
Empirical g.f.: 4*x*(27 - 56*x + 24*x^2) / (1 - 9*x + 15*x^2 - 6*x^3). - Colin Barker, Jun 04 2018