This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203398 #21 Jun 07 2019 19:39:16 %S A203398 2,2,1,2,0,2,2,1,0,3,2,0,0,0,6,2,1,2,0,0,9,2,0,0,0,0,0,18,2,1,0,3,0,0, %T A203398 0,30,2,0,2,0,0,0,0,0,56,2,1,0,0,6,0,0,0,0,99,2,0,0,0,0,0,0,0,0,0,186, %U A203398 2,1,2,3,0,9,0,0,0,0,0,335 %N A203398 T(n,k), a triangular array read by rows, is the number of classes of equivalent 2-color n-bead necklaces (turning over is not allowed) that have k necklaces. %C A203398 Equivalently, the cyclic group of order n acts on the set of length n binary sequences. T(n,k) is the number of orbits that have k elements. %H A203398 F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> %H A203398 Frank Ruskey, <a href="https://web.archive.org/web/20171022155546/http://www.1stworks.com/ref/RuskeyCombGen.pdf">Combinatorial Generation Algorithm Algorithm 4.24, p. 95</a>. %e A203398 2 %e A203398 2 1 %e A203398 2 0 2 %e A203398 2 1 0 3 %e A203398 2 0 0 0 6 %e A203398 2 1 2 0 0 9 %e A203398 2 0 0 0 0 0 18 %e A203398 2 1 0 3 0 0 0 30 %e A203398 2 0 2 0 0 0 0 0 56 %e A203398 2 1 0 0 6 0 0 0 0 99 %e A203398 2 0 0 0 0 0 0 0 0 0 186 %e A203398 2 1 2 3 0 9 0 0 0 0 0 335 %t A203398 Needs["Combinatorica`"]; %t A203398 f[list_] := Sort[NestList[RotateLeft, list, Length[list]-1]]; Flatten[Table[Distribution[Map[Length, Map[Union, Union[Map[f, Strings[{0, 1}, n]]]]], Range[n]], {n, 1, 12}]] %Y A203398 A000031 (row sums), T(n,n) = A001037, T(n,n) = A064535 when n is prime, T(n,k) = A001037(k) when k divides n. %Y A203398 Cf. A203399. %K A203398 nonn,tabl %O A203398 1,1 %A A203398 _Geoffrey Critzer_, Jan 01 2012