cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203411 Discriminant of the cyclotomic binomial period polynomial for an odd prime.

This page as a plain text file.
%I A203411 #25 Aug 11 2023 11:22:18
%S A203411 1,5,49,14641,371293,410338673,16983563041,41426511213649,
%T A203411 10260628712958602189,756943935220796320321,
%U A203411 456487940826035155404146917,4394336169668803158610484050361,467056167777397914441056671494001,6111571184724799803076702357055363809
%N A203411 Discriminant of the cyclotomic binomial period polynomial for an odd prime.
%H A203411 Mohammad K. Azarian, <a href="http://www.ijpam.eu/contents/2007-36-2/9/9.pdf">On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials</a>, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257.  Mathematical Reviews, MR2312537.  Zentralblatt MATH, Zbl 1133.11012.
%H A203411 J. Brillhart, <a href="http://dx.doi.org/10.2140/pjm.1992.152.15">Note on the discriminant of certain cyclotomic period polynomials</a>, Pacific Journal of Mathematics, 152/1(1992), 15-19.
%H A203411 L. Carlitz and F. R. Olson, <a href="http://www.jstor.org/stable/2032352">Maillet's determinant</a>, Proceedings of the American Mathematical Society, 6/2 (1955), 265-269.
%H A203411 L. Carlitz, <a href="http://www.jstor.org/stable/2032353">A special determinant</a>, Proceedings of the American Mathematical Society, 6/2 (1955), 270-272.
%F A203411 a(n) = prime(n)^((prime(n)-3)/2).
%e A203411 a(5) = 11^4 = 14641, because prime(5) = 11.
%t A203411 #^((#-3)/2)&/@Prime[Range[2,20]] (* _Harvey P. Dale_, Aug 11 2023 *)
%o A203411 (PARI) a(n) = prime(n)^((prime(n)-3)/2); \\ _Michel Marcus_, Apr 15 2017
%Y A203411 Cf. A152291.
%K A203411 nonn
%O A203411 2,2
%A A203411 _Franz Vrabec_, Jan 01 2012
%E A203411 More terms from _Franklin T. Adams-Watters_, Jan 24 2012