This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203411 #25 Aug 11 2023 11:22:18 %S A203411 1,5,49,14641,371293,410338673,16983563041,41426511213649, %T A203411 10260628712958602189,756943935220796320321, %U A203411 456487940826035155404146917,4394336169668803158610484050361,467056167777397914441056671494001,6111571184724799803076702357055363809 %N A203411 Discriminant of the cyclotomic binomial period polynomial for an odd prime. %H A203411 Mohammad K. Azarian, <a href="http://www.ijpam.eu/contents/2007-36-2/9/9.pdf">On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials</a>, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012. %H A203411 J. Brillhart, <a href="http://dx.doi.org/10.2140/pjm.1992.152.15">Note on the discriminant of certain cyclotomic period polynomials</a>, Pacific Journal of Mathematics, 152/1(1992), 15-19. %H A203411 L. Carlitz and F. R. Olson, <a href="http://www.jstor.org/stable/2032352">Maillet's determinant</a>, Proceedings of the American Mathematical Society, 6/2 (1955), 265-269. %H A203411 L. Carlitz, <a href="http://www.jstor.org/stable/2032353">A special determinant</a>, Proceedings of the American Mathematical Society, 6/2 (1955), 270-272. %F A203411 a(n) = prime(n)^((prime(n)-3)/2). %e A203411 a(5) = 11^4 = 14641, because prime(5) = 11. %t A203411 #^((#-3)/2)&/@Prime[Range[2,20]] (* _Harvey P. Dale_, Aug 11 2023 *) %o A203411 (PARI) a(n) = prime(n)^((prime(n)-3)/2); \\ _Michel Marcus_, Apr 15 2017 %Y A203411 Cf. A152291. %K A203411 nonn %O A203411 2,2 %A A203411 _Franz Vrabec_, Jan 01 2012 %E A203411 More terms from _Franklin T. Adams-Watters_, Jan 24 2012