This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203418 #12 Feb 24 2024 11:03:52 %S A203418 1,2,16,240,11520,13271040,254803968000,15892123484160000, %T A203418 5126163351050649600000,89288743527804466888704000000, %U A203418 50689719717698351557731837542400000000,125765178831579421305165126665125232640000000000 %N A203418 Vandermonde determinant of the first n composite numbers (A002808). %C A203418 Each term divides its successor, as in A203419, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203420. %H A203418 G. C. Greubel, <a href="/A203418/b203418.txt">Table of n, a(n) for n = 1..42</a> %t A203418 composite = Select[Range[100], CompositeQ]; (* A002808 *) %t A203418 z = 20; %t A203418 f[j_]:= composite[[j]]; %t A203418 v[n_]:= Product[Product[f[k] - f[j], {j, 1, k-1}], {k, 2, n}]; %t A203418 d[n_]:= Product[(i - 1)!, {i, 1, n}]; %t A203418 Table[v[n], {n,z}] (* this sequence *) %t A203418 Table[v[n+1]/v[n], {n,z}] (* A203419 *) %t A203418 Table[v[n]/d[n], {n,z}] (* A203420 *) %o A203418 (Magma) %o A203418 A002808:=[n: n in [2..250] | not IsPrime(n)]; %o A203418 a:= func< n | n eq 0 select 1 else (&*[(&*[A002808[k+2] - A002808[j+1]: j in [0..k]]): k in [0..n-1]]) >; %o A203418 [a(n): n in [0..20]]; // _G. C. Greubel_, Feb 24 2024 %o A203418 (SageMath) %o A203418 A002808=[n for n in (2..250) if not is_prime(n)] %o A203418 def a(n): return product(product( A002808[k+1] - A002808[j] for j in range(k+1)) for k in range(n)) %o A203418 [a(n) for n in range(15)] # _G. C. Greubel_, Feb 24 2024 %Y A203418 Cf. A000040, A000178, A002808, A203419, A203420. %K A203418 nonn %O A203418 1,2 %A A203418 _Clark Kimberling_, Jan 02 2012