This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203420 #20 May 27 2025 11:11:24 %S A203420 1,2,8,20,40,384,10240,126720,1013760,48660480,7612661760, %T A203420 473174507520,16701626253312,4036421002199040,407426244909465600, %U A203420 23814785343474892800,932976775107465707520,26694111965427724713984,9044593230639040844267520 %N A203420 a(n) = A203418(n)/A000178(n). %H A203420 G. C. Greubel, <a href="/A203420/b203420.txt">Table of n, a(n) for n = 1..140</a> %H A203420 R. Chapman, <a href="https://web.archive.org/web/20230227162446/https://www.maa.org/sites/default/files/Robin_Chapman27238.pdf">A polynomial taking integer values</a>, Mathematics Magazine, 29 (1996), 121. %t A203420 composite = Select[Range[100], CompositeQ]; (* A002808 *) %t A203420 z = 20; %t A203420 f[j_]:= composite[[j]]; %t A203420 v[n_]:= Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]; %t A203420 d[n_]:= Product[(i-1)!, {i, 1, n}]; %t A203420 Table[v[n], {n,z}] (* A203418 *) %t A203420 Table[v[n+1]/v[n], {n,z}] (* A203419 *) %t A203420 Table[v[n]/d[n], {n,z}] (* this sequence *) %o A203420 (Magma) %o A203420 A002808:=[n: n in [2..250] | not IsPrime(n)]; %o A203420 BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >; %o A203420 a:= func< n | n eq 1 select 1 else (&*[(&*[A002808[k+2] - A002808[j+1]: j in [0..k]]): k in [0..n-2]])/BarnesG(n+1) >; %o A203420 [a(n): n in [1..40]]; // _G. C. Greubel_, Feb 24 2024 %o A203420 (SageMath) %o A203420 A002808=[n for n in (2..250) if not is_prime(n)] %o A203420 def BarnesG(n): return product(factorial(j) for j in range(1,n-1)) %o A203420 def a(n): return product(product(A002808[k+1] - A002808[j] for j in range(k+1)) for k in range(n-1))/BarnesG(n+1) %o A203420 [a(n) for n in range(1,41)] # _G. C. Greubel_, Feb 24 2024 %Y A203420 Cf. A000040, A000178, A002808, A018252, A202808, A203417, A203418, A203419. %K A203420 nonn %O A203420 1,2 %A A203420 _Clark Kimberling_, Jan 02 2012