This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203428 #12 Aug 09 2025 05:48:33 %S A203428 1,-6,-486,839808,42515280000,-80335512599040000, %T A203428 -6890065294166289123840000,31601087581187838970614157148160000, %U A203428 8925080517850366815864624583251321642024960000 %N A203428 Reciprocal of Vandermonde determinant of (1/3,1/6,...,1/(3n)). %C A203428 Each term divides its successor, as in A203429. %H A203428 G. C. Greubel, <a href="/A203428/b203428.txt">Table of n, a(n) for n = 1..33</a> %F A203428 a(n) = (-3)^binomial(n,2) * (Gamma(n+1))^(n-1) / BarnesG(n+1). - _G. C. Greubel_, Sep 28 2023 %F A203428 a(n) ~ (-1)^(n*(n-1)/2) * A * 3^(n*(n-1)/2) * n^(n*(n-1)/2 - 5/12) / (sqrt(2*Pi) * exp(n^2/4 - n)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Aug 09 2025 %t A203428 (* First program *) %t A203428 f[j_]:= 1/(3*j); z = 16; %t A203428 v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] %t A203428 1/Table[v[n], {n,z}] (* A203428 *) %t A203428 Table[v[n]/(3*v[n+1]), {n,z}] (* A203429 *) %t A203428 (* Second program *) %t A203428 Table[(-3)^Binomial[n,2]*(Gamma[n+1])^(n-1)/BarnesG[n+1], {n,20}] (* _G. C. Greubel_, Sep 28 2023 *) %o A203428 (Magma) %o A203428 Barnes:= func< n | (&*[Factorial(j): j in [1..n-1]]) >; %o A203428 A203428:= func< n | (-3)^Binomial(n,2)*(Factorial(n))^n/Barnes(n+1) >; %o A203428 [A203428(n): n in [1..25]]; // _G. C. Greubel_, Sep 28 2023 %o A203428 (SageMath) %o A203428 def barnes(n): return product(factorial(j) for j in range(n)) %o A203428 def A203428(n): return (-3)^binomial(n,2)*(factorial(n))^n/barnes(n+1) %o A203428 [A203428(n) for n in range(1,21)] # _G. C. Greubel_, Sep 28 2023 %Y A203428 Cf. A203421, A203424, A203429. %K A203428 sign %O A203428 1,2 %A A203428 _Clark Kimberling_, Jan 02 2012