This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203430 #12 Sep 28 2023 02:03:55 %S A203430 1,2,6,180,12960,18662400,84652646400,12068081270784000, %T A203430 6568897997313146880000,157325632547489652827750400000, %U A203430 16698920220108665726304214056960000000,101984821172231138973752227905335721984000000000 %N A203430 Vandermonde determinant of the first n numbers (1,3,4,6,7,9,10,...) = (j+floor(j/2)). %C A203430 Each term divides its successor, as in A203431, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203432. %H A203430 G. C. Greubel, <a href="/A203430/b203430.txt">Table of n, a(n) for n = 1..40</a> %t A203430 f[j_]:= j + Floor[j/2]; z = 20; %t A203430 v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] %t A203430 d[n_]:= Product[(i-1)!, {i,n}] %t A203430 Table[v[n], {n,z}] (* this sequence *) %t A203430 Table[v[n+1]/v[n], {n,z}] (* A203431 *) %t A203430 Table[v[n]/d[n], {n,z}] (* A203432 *) %o A203430 (Magma) %o A203430 A203430:= func< n | n eq 1 select 1 else (&*[(&*[k-j+Floor((k+1)/2)-Floor((j+1)/2): j in [0..k-1]]) : k in [1..n-1]]) >; %o A203430 [A203430(n): n in [1..25]]; // _G. C. Greubel_, Sep 27 2023 %o A203430 (SageMath) %o A203430 def A203430(n): return product(product(k-j+((k+1)//2)-((j+1)//2) for j in range(k)) for k in range(1, n)) %o A203430 [A203430(n) for n in range(1, 31)] # _G. C. Greubel_, Sep 27 2023 %Y A203430 Cf. A032766, A203431, A203432. %K A203430 nonn %O A203430 1,2 %A A203430 _Clark Kimberling_, Jan 02 2012