This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203465 #15 Sep 19 2023 03:41:07 %S A203465 1,2,24,5376,72253440,192663508746240,345230911480770991226880, %T A203465 1436598918224589625071929521581588480, %U A203465 48781096034575545526663437061892218092260229434572800 %N A203465 a(n) = A203305(n)/A000178(n) where A000178 are superfactorials. %H A203465 G. C. Greubel, <a href="/A203465/b203465.txt">Table of n, a(n) for n = 1..22</a> %H A203465 R. Chapman, <a href="https://www.jstor.org/stable/2690667">A polynomial taking integer values</a>, Mathematics Magazine, 29 (1996), 121. %t A203465 f[j_]:= 2^j - 1; z = 10; %t A203465 v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}] %t A203465 d[n_]:= Product[(i-1)!, {i,n}] %t A203465 Table[v[n], {n,z}] (* A203305 *) %t A203465 Table[v[n]/d[n], {n,z}] (* A203465 *) %o A203465 (Magma) F:= Factorial; [1] cat [(&*[(&*[2^(k+1) - 2^(j): j in [1..k]])/Factorial(k): k in [1..n-1]]): n in [2..20]]; // _G. C. Greubel_, Sep 19 2023 %o A203465 (SageMath) f=factorial; [product(product(2^(k+1) - 2^j for j in range(1, k+1))//factorial(k) for k in range(1, n)) for n in range(1,21)] // _G. C. Greubel_, Sep 19 2023 %Y A203465 Cf. A203305. %K A203465 nonn %O A203465 1,2 %A A203465 _Clark Kimberling_, Jan 02 2012 %E A203465 Name edited by _Michel Marcus_, May 17 2019