This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203471 #18 Oct 31 2024 01:33:40 %S A203471 1,5,105,8820,2910600,3745942200,18748440711000,364619674947528000, %T A203471 27558684271884061296000,8100324068034882136733280000, %U A203471 9267305355220395466643896716480000,41308086890359390753018505224037952000000 %N A203471 a(n) = v(n)/A000178(n), v = A203470, A000178 = (superfactorials). %H A203471 G. C. Greubel, <a href="/A203471/b203471.txt">Table of n, a(n) for n = 1..55</a> %F A203471 From _G. C. Greubel_, Aug 29 2023: (Start) %F A203471 a(n) = Product_{j=1..n} Gamma(2*j+2)/(Gamma(j)*Gamma(j+3)). %F A203471 a(n) = (2/sqrt(Pi))*( 2^(n+1)^2 * BarnesG(n+5/2) /(Pi^(n/2) * Gamma(n+2)*Gamma(n+3)*BarnesG(3/2)*BarnesG(n+1)) ). %F A203471 a(n) = (BarnesG(n+2)/(2^n * BarnesG(n+1))) * Product_{j=1..n} Catalan(j+1). (End) %F A203471 a(n) ~ A^(3/2) * 2^(n^2 + 2*n + 41/24) * exp(n/2 - 1/8) / (n^(n/2 + 23/8) * Pi^(n/2 + 1)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Nov 19 2023 %F A203471 a(n) = Product_{1 <= j <= i <= n-1} (i + j + 3)/(i - j + 1). - _Peter Bala_, Oct 25 2024 %t A203471 (* First program *) %t A203471 f[j_]:= j+1; z = 16; %t A203471 v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}] %t A203471 d[n_]:= Product[(i-1)!, {i,n}] %t A203471 Table[v[n], {n, z}] (* A203470 *) %t A203471 Table[v[n+1]/v[n], {n, z-1}] (* A102693 *) %t A203471 Table[v[n]/d[n], {n, 20}] (* A203471 *) %t A203471 (* Second program *) %t A203471 Table[Product[Gamma[2*j+2]/(Gamma[j]*Gamma[j+3]), {j,n}], {n,20}] (* _G. C. Greubel_, Aug 29 2023 *) %o A203471 (Magma) [(&*[Factorial(2*k+1)/(Factorial(k-1)*Factorial(k+2)): k in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 29 2023 %o A203471 (SageMath) [product(gamma(2*k+4)/(gamma(k+1)*gamma(k+4)) for k in range(n)) for n in range(1, 20)] # G. C. Greubel, Aug 29 2023 %Y A203471 Cf. A000178, A007685, A102693, A203470, A296589, A338550. %K A203471 nonn %O A203471 1,2 %A A203471 _Clark Kimberling_, Jan 02 2012