This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203474 #20 Aug 27 2023 04:33:05 %S A203474 1,7,252,41580,29729700,89278289100,1104908105901600, %T A203474 55674109640169820800,11329124570678156834592000, %U A203474 9258047307912482983660236480000,30262334718212007877669234596364800000 %N A203474 a(n) = A203472(n) / A000178(n-1), where A000178 are the superfactorials. %H A203474 G. C. Greubel, <a href="/A203474/b203474.txt">Table of n, a(n) for n = 1..55</a> %F A203474 a(n) ~ 3*A^(3/2) * 2^(n^2 + 4*n + 185/24) * exp(n/2 - 1/8) / (Pi^(n/2 + 3/2) * n^(n/2 + 59/8)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Apr 09 2021 %F A203474 From _G. C. Greubel_, Aug 27 2023: (Start) %F A203474 a(n) = Product_{j=1..n} binomial(2*j+3, j+4). %F A203474 a(n) = (18*2^(n+2)^2/Pi^(n/2))*BarnesG(n+3)*BarnesG(n+7/2)/( BarnesG(n +1)*BarnesG(n+6)*BarnesG(7/2)). (End) %t A203474 (* First program *) %t A203474 f[j_]:= j+2; z=16; %t A203474 v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]; %t A203474 d[n_]:= Product[(i-1)!, {i,n}] (* A000178(n-1) *) %t A203474 Table[v[n], {n,z}] (* A203472 *) %t A203474 Table[v[n+1]/v[n], {n,z-1}] (* A203473 *) %t A203474 Table[v[n]/d[n], {n,20}] (* A203474 *) %t A203474 (* Second program *) %t A203474 Table[Product[Binomial[2*j+3, j+4], {j,n}], {n,20}] (* _G. C. Greubel_, Aug 27 2023 *) %o A203474 (Magma) [(&*[ Binomial(2*j+3, j+4): j in [1..n]]): n in [1..20]]; // _G. C. Greubel_, Aug 27 2023 %o A203474 (SageMath) [product( binomial(2*j+5,j+5) for j in range(n) ) for n in range(1,20)] # _G. C. Greubel_, Aug 27 2023 %Y A203474 Cf. A000178, A093883, A203472, A203473. %K A203474 nonn %O A203474 1,2 %A A203474 _Clark Kimberling_, Jan 02 2012 %E A203474 Definition corrected by _Vaclav Kotesovec_, Apr 09 2021