cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203476 a(n) = v(n+1)/v(n), where v = A203475.

This page as a plain text file.
%I A203476 #16 Aug 28 2023 03:08:28
%S A203476 5,130,8500,1051076,211255200,62840245000,25959932960000,
%T A203476 14224928867370000,9986120745657472000,8740787543400204500000,
%U A203476 9333385482079885824000000,11942338721669302523305000000,18038821394494464638896640000000
%N A203476 a(n) = v(n+1)/v(n), where v = A203475.
%H A203476 G. C. Greubel, <a href="/A203476/b203476.txt">Table of n, a(n) for n = 1..200</a>
%F A203476 a(n) ~ 2^(n + 1/2) * exp(Pi*(n+1)/2 - 2*n) * n^(2*n). - _Vaclav Kotesovec_, Jan 25 2019
%F A203476 a(n) = Product_{j=1..n} ((n+1)^2 + j^2). - _G. C. Greubel_, Aug 28 2023
%t A203476 (* First program *)
%t A203476 f[j_]:= j^2; z = 15;
%t A203476 v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
%t A203476 Table[v[n], {n,z}]           (* A203475 *)
%t A203476 Table[v[n+1]/v[n], {n,z-1}]  (* A203476 *)
%t A203476 (* Second program *)
%t A203476 Table[Product[j^2 +(n+1)^2 , {j,n}], {n,20}] (* _G. C. Greubel_, Aug 28 2023 *)
%o A203476 (Magma) [(&*[(n+1)^2 + j^2: j in [1..n]]): n in [1..20]]; // _G. C. Greubel_, Aug 28 2023
%o A203476 (SageMath) [product(j^2+(n+1)^2 for j in range(1,n+1)) for n in range(1,21)] # _G. C. Greubel_, Aug 28 2023
%Y A203476 Cf. A093883, A110468, A203475.
%K A203476 nonn
%O A203476 1,1
%A A203476 _Clark Kimberling_, Jan 02 2012