This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203477 #23 Aug 28 2023 03:35:02 %S A203477 1,3,90,97200,14276736000,1107198567383040000, %T A203477 178601637561927097909248000000, %U A203477 237856509917156074017606774172522905600000000,10420480393274493153643458442091600404477248333907230720000000000 %N A203477 a(n) = Product_{0 <= i < j <= n-1} (2^i + 2^j). %C A203477 Each term divides its successor, as in A203478. %H A203477 G. C. Greubel, <a href="/A203477/b203477.txt">Table of n, a(n) for n = 1..21</a> %p A203477 a:= n-> mul(mul(2^i+2^j, i=0..j-1), j=1..n-1): %p A203477 seq(a(n), n=1..10); # _Alois P. Heinz_, Jul 23 2017 %t A203477 (* First program *) %t A203477 f[j_]:= 2^(j-1); z = 13; %t A203477 v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}] %t A203477 Table[v[n], {n,z}] (* A203477 *) %t A203477 Table[v[n+1]/v[n], {n,z-1}] (* A203478 *) %t A203477 Table[v[n]*v[n+2]/(2*v[n+1]^2), {n,22}] (* A164051 *) %t A203477 (* Second program *) %t A203477 Table[Product[(2^j^2)*QPochhammer[-1/2^j,2,j], {j,0,n-1}], {n,20}] (* _G. C. Greubel_, Aug 28 2023 *) %o A203477 (PARI) a(n)=prod(i=0,n-2,prod(j=i+1,n-1,2^i+2^j)) \\ _Charles R Greathouse IV_, Feb 16 2021 %o A203477 (Magma) [(&*[(&*[2^j + 2^k: k in [0..j]])/2^(j+1): j in [0..n-1]]): n in [1..20]]; // _G. C. Greubel_, Aug 28 2023 %o A203477 (SageMath) [product(product(2^j + 2^k for k in range(j)) for j in range(n)) for n in range(1,21)] # _G. C. Greubel_, Aug 28 2023 %Y A203477 Cf. A000079, A093883, A164051, A203305, A203478. %K A203477 nonn,easy %O A203477 1,2 %A A203477 _Clark Kimberling_, Jan 02 2012 %E A203477 Name edited by _Alois P. Heinz_, Jul 23 2017