This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203481 #15 Aug 09 2025 06:42:01 %S A203481 1,20,1584,475456,541981440,2376277529600,40580860464967680, %T A203481 2725519037191790608384,724680197846400799531008000, %U A203481 766028090108619425976217272320000,3227487808644444231639810280103215104000 %N A203481 a(n) = v(n+1)/(4*v(n)), where v = A203479. %H A203481 G. C. Greubel, <a href="/A203481/b203481.txt">Table of n, a(n) for n = 1..55</a> %F A203481 a(n) = (1/4)*Product_{k=1..n} (2^k + 2^(n+1) - 2). - _G. C. Greubel_, Aug 28 2023 %F A203481 a(n) ~ c * 2^(n*(n+1)-2), where c = 1/QPochhammer(1/2, 1/4) = A079555 = 2.3842310290313717... - _Vaclav Kotesovec_, Aug 09 2025 %t A203481 (* First program *) %t A203481 f[j_]:= 2^j - 1; z = 15; %t A203481 v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}] %t A203481 Table[v[n], {n, z}] (* A203479 *) %t A203481 Table[v[n+1]/v[n], {n, z-1}] (* A203480 *) %t A203481 Table[v[n+1]/(4*v[n]), {n, z-1}] (* A203481 *) %t A203481 (* Second program *) %t A203481 Table[Product[2^(n+1) +2^k -2, {k,n}]/4, {n,20}] (* _G. C. Greubel_, Aug 28 2023 *) %o A203481 (Magma) [(&*[2^j + 2^(n+1) - 2: j in [1..n]])/4: n in [1..20]]; // _G. C. Greubel_, Aug 28 2023 %o A203481 (SageMath) [product(2^j+2^(n+1)-2 for j in range(1,n+1))/4 for n in range(1,21)] # _G. C. Greubel_, Aug 28 2023 %Y A203481 Cf. A203479, A203480, A093883. %Y A203481 Cf. A079555. %K A203481 nonn %O A203481 1,2 %A A203481 _Clark Kimberling_, Jan 02 2012