This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203521 #26 Jul 26 2017 14:29:41 %S A203521 1,1,5,280,302400,15850598400,32867800842240000, %T A203521 5539460271229108224000000,55190934927547677562078494720000000, %U A203521 61965661927377302817151474643396198400000000000,14512955968670787590604912803260278557019929051136000000000000 %N A203521 a(n) = Product_{1 <= i < j <= n} (prime(i) + prime(j)). %C A203521 Each term divides its successor, as in A203511. It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n). See A093883 for a guide to related sequences. %H A203521 Alois P. Heinz, <a href="/A203521/b203521.txt">Table of n, a(n) for n = 0..32</a> %e A203521 a(1) = 1. %e A203521 a(2) = 2 + 3 = 5. %e A203521 a(3) = (2+3)(2+5)(3+5) = 280. %p A203521 a:= n-> mul(mul(ithprime(i)+ithprime(j), i=1..j-1), j=2..n): %p A203521 seq(a(n), n=0..10); # _Alois P. Heinz_, Jul 23 2017 %t A203521 f[j_] := Prime[j]; z = 15; %t A203521 v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}] %t A203521 d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *) %t A203521 Table[v[n], {n, 1, z}] (* A203521 *) %t A203521 Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203522 *) %t A203521 Table[v[n]/d[n], {n, 1, 20}] (* A203523 *) %Y A203521 Cf. A000040, A080358, A203522, A203523, A203524. %K A203521 nonn %O A203521 0,3 %A A203521 _Clark Kimberling_, Jan 03 2012 %E A203521 Name edited by _Alois P. Heinz_, Jul 23 2017