This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203530 #16 Jul 23 2017 13:44:53 %S A203530 1,10,1680,5569200,426645273600,1135354270482432000, %T A203530 129053267560513803386880000,556394398742051964595520667648000000, %U A203530 99449133623220179596974346585642106880000000000 %N A203530 a(n) = Product_{1 <= i < j <= n} (c(i) + c(j)); c = A002808 = composite numbers. %C A203530 Each term divides its successor, as in A203530. %C A203530 It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n); as in A203533. %C A203530 See A093883 for a guide to related sequences. %p A203530 c:= proc(n) option remember; local k; if n=1 then 4 %p A203530 else for k from 1+c(n-1) while isprime(k) do od; k fi %p A203530 end: %p A203530 a:= n-> mul(mul(c(i)+c(j), i=1..j-1), j=2..n): %p A203530 seq(a(n), n=1..10); # _Alois P. Heinz_, Jul 23 2017 %t A203530 t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}]; %t A203530 composite = Rest[Rest[Union[t]]] (* A002808 *) %t A203530 f[j_] := composite[[j]]; z = 20; %t A203530 v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}] %t A203530 d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *) %t A203530 Table[v[n], {n, 1, z}] (* A203530 *) %t A203530 Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203532 *) %t A203530 Table[v[n]/d[n], {n, 1, 20}] (* A203533 *) %Y A203530 Cf. A002808, A203418, A203532, A203533. %K A203530 nonn %O A203530 1,2 %A A203530 _Clark Kimberling_, Jan 03 2012 %E A203530 Name edited by _Alois P. Heinz_, Jul 23 2017