A203565 Numbers that contain the product of any two adjacent digits as a substring.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 126, 130, 131, 140, 141, 150, 151
Offset: 1
Examples
Any number having no two adjacent digits larger than 1 is trivially in the sequence. The smallest nontrivial example is the number 126, which is in the sequence since 1*2=2 and 2*6=12 are both substrings of "126".
Links
- Jayanta Basu, Table of n, a(n) for n = 1..1000
- E. Angelini, 10 different digits, 9 products, seqfan list, Jan 03 2012.
Crossrefs
Programs
-
Maple
filter:= proc(n) local L,S,i; S:= convert(n,string); for i from 1 to length(S)-1 do if StringTools:-Search(convert(parse(cat(S[i],"*",S[i+1])),string),S) = 0 then return false fi od: true end proc: select(filter, [$0..1000]); # Robert Israel, Oct 15 2014
-
Mathematica
d[n_] := IntegerDigits[n]; Select[Range[0, 151], And @@ Table[MemberQ[FromDigits /@ Partition[d[#], IntegerLength[k], 1], k], {k, Times @@@ Partition[d[#], 2, 1]}] &] (* Jayanta Basu, Aug 10 2013 *)
-
PARI
has(n,m)={ my(p=10^#Str(m)); until( m>n\=10, n%p==m & return(1))} is_A203565(n)={ my(d); for(i=2,#d=eval(Vec(Str(n))), has(n,d[i]*d[i-1]) | return);1 } is_A203565(n)={ my(d=Vecsmall(Str(n))); for(i=2,#d, d[i]<50 & i++ & next; has(n,d[i-1]%48*(d[i]-48)) | return);1 } /* twice as fast */ for( n=0,999, is_A203565(n) & print1(n","))
Comments