A203575 Array of certain four complete residue classes (nonnegative members), read by SW-NE antidiagonals.
0, 1, 4, 2, 7, 8, 3, 6, 9, 12, 5, 10, 15, 16, 11, 14, 17, 20, 13, 18, 23, 24, 19, 22, 25, 28, 21, 26, 31, 32, 27, 30, 33, 36, 29, 34, 39, 40, 35, 38, 41, 44, 37, 42, 47, 48, 43, 46
Offset: 1
Examples
The array starts n\m 1 2 3 4 1: 0 2: 1 4 3: 2 7 8 4: 3 6 9 12 5: 5 10 15 16 6: 11 14 17 20 7: 13 18 23 24 8: 19 22 25 28 9: 21 26 31 32 10: 27 30 33 36 ... The sequence P_4(n)=A193682(n), n>=0, is repeated 0, 1, 2, 3, 0, 3, 2, 1, with period length 8. P_4(6)=2, hence 6 belongs to class [2]. Multiplicative structure: 11*23 == 3*1 = 3. Indeed: P_4(11*23) = P_4(253) = P_(5), because 253==5(mod 8), and P_(5)= 3, hence 11*23 belongs to class 3. In general, P_4(p*q) = P_4(P_4(p)*P_4(q)).
Formula
The nonnegative members of the four complete residue classes are (see a comment above for their definition):
[0]: 0, 4, 8, 12, 16, 20, 24, 28, 32, 36,... (A008586)
[1]: 1, 7, 9, 15, 17, 23, 25, 31, 33, 39,... (A047522)
[2]: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38,... (A016825)
[3]: 3, 5, 11, 13, 19, 21, 27, 29, 35, 37,... (A047621)
In each class the corresponding negative numbers should be included.
Comments