A203576 Exponential (or binomial) half-convolution of A000984 (central binomial) with itself.
1, 2, 14, 56, 446, 2152, 18248, 97120, 848254, 4796552, 42454664, 250140640, 2226532712, 13516860320, 120553738144, 748819997056, 6679690686334, 42254745008840, 376638926040392, 2418457241945056, 21530200591563496, 139992790135717792, 1244418656720926624, 8178446389043428736
Offset: 0
Examples
With cbi = {1, 2, 6, 20, 70, 252, ...} a(4) = 1*70 + 4*2*20 + 6*6^2 = 446, a(5) = 1*252 + 5*2*70 + 10*6*20 = 2152.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
cbi[n_] := Binomial[2*n, n]; a[n_] := Sum[Binomial[n, k]*cbi[k]*cbi[n - k], {k, 0, Floor[n/2]}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 09 2013 *)
-
PARI
A203576(n)=sum(k=0,n\2,binomial(n,k)*A000984(k)*A000984(n-k)) \\ M. F. Hasler, Jan 13 2012
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*cbi(k)*cbi(n-k) n>=0, with cbi(n)=A000984(n).
E.g.f.: (exp(4*x)*BesselI(0, 2*x)^2 + hypergeom([1/2,1/2], [1,1,1],(4*x)^2))/2. See comment above.
Recurrence: (n-1)^2 * n^3 * (3*n^5 - 40*n^4 + 200*n^3 - 476*n^2 + 544*n - 241)*a(n) = 4*(n-1)^3 * (9*n^7 - 126*n^6 + 699*n^5 - 1997*n^4 + 3165*n^3 - 2770*n^2 + 1239*n - 228)*a(n-1) + 32*(3*n^10 - 55*n^9 + 420*n^8 - 1786*n^7 + 4731*n^6 - 8232*n^5 + 9630*n^4 - 7580*n^3 + 3900*n^2 - 1194*n + 162)*a(n-2) - 256*(n-2)^3 * (9*n^7 - 126*n^6 + 699*n^5 - 1997*n^4 + 3165*n^3 - 2770*n^2 + 1239*n - 228)*a(n-3) + 2048*(n-3)^3 * (n-2)^2 * (3*n^5 - 25*n^4 + 70*n^3 - 86*n^2 + 47*n - 10)*a(n-4). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 8^n / (Pi*n) * (1 + (1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 25 2014
Comments