cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203577 Exponential (or binomial) half-convolution of the sequence A000108 (Catalan) with itself.

Original entry on oeis.org

1, 1, 4, 11, 58, 212, 1304, 5567, 37734, 178148, 1284124, 6501420, 48758648, 259775440, 2000594288, 11080668871, 86930955662, 496461841956, 3947716126292, 23113333523180, 185660199980696, 1109722749130576, 8983793097101144, 54645629076275356, 445109373450545608, 2748480598104423952
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2012

Keywords

Comments

For the definition of the exponential (also known as binomial) half-convolution of a sequence with itself see A203576, where also the rule for the e.g.f. is given.

Examples

			With Catalan = A000108 = {1, 1, 2, 5, 14, 42, ...}
a(4) = 1*1*14 + 4*1*5 + 6*2*2 = 58.
a(5) = 1*1*42 + 5*1*14 + 10*2*5 = 212.
		

Crossrefs

Cf. A203576, A000108, A014330 (exponential convolution).

Programs

  • Mathematica
    a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k]*CatalanNumber[n - k], {k, 0, n/2}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 21 2013 *)
  • PARI
    hat(b,n) = sum(k=0,n\2,binomial(n,k)*b(k)*b(n-k))
    A203577(n)=hat(A000108,n)  \\ where A000108(n)=(2*n)!/n!/(n+1)! \\ - M. F. Hasler, Jan 13 2012

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*Catalan(k)*Catalan(n-k), n >= 0.
E.g.f.: (C(x)^2 + C2(x^2))/2 with the e.g.f. C(x) of A000108, and the e.g.f. C2(x) := Sum_{n>=0} Catalan(n)^2*x^n/(n!)^2 of the scaled Catalan squares. See a comment above.
C(x) = hypergeom([1/2],[2],4*x) (see A000108 for the version involving BesselI functions), and
C2(x) = hypergeom([1/2,1/2],[1,2,2],16*x).
Recurrence: n*(n+1)^2 * (n+2)^2 * (3*n^6 - 39*n^5 + 166*n^4 - 322*n^3 + 316*n^2 - 153*n + 27)*a(n) = 12*(n-1)*n*(n+1)^2 * (3*n^7 - 34*n^6 + 113*n^5 - 121*n^4 - 19*n^3 + 68*n^2 + 17*n - 18)*a(n-1) + 32*(3*n^11 - 45*n^10 + 220*n^9 - 448*n^8 + 173*n^7 + 920*n^6 - 1696*n^5 + 842*n^4 + 580*n^3 - 846*n^2 + 360*n - 54)*a(n-2) - 768*(n-2)^3 * n *(3*n^7 - 34*n^6 + 113*n^5 - 121*n^4 - 19*n^3 + 68*n^2 + 17*n - 18)*a(n-3) + 2048*(n-3)^3 * (n-2)^2 * (3*n^6 - 21*n^5 + 16*n^4 + 12*n^3 + n^2 - 2)*a(n-4). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 2^(3*n+2)/(Pi*n^3) * (1 + (1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 25 2014