cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203579 Exponential (or binomial) convolution of A000032 (Lucas) with itself, divided by 2.

This page as a plain text file.
%I A203579 #15 Dec 28 2020 20:33:22
%S A203579 2,2,7,17,57,177,577,1857,6017,19457,62977,203777,659457,2134017,
%T A203579 6905857,22347777,72318977,234029057,757334017,2450784257,7930904577,
%U A203579 25664946177,83053510657,268766806017,869747654657,2814562533377,9108115685377,29474481504257
%N A203579 Exponential (or binomial) convolution of A000032 (Lucas) with itself, divided by 2.
%H A203579 Michael De Vlieger, <a href="/A203579/b203579.txt">Table of n, a(n) for n = 0..1961</a>
%H A203579 Sergio Falcon, <a href="https://doi.org/10.7546/nntdm.2020.26.3.96-106">Half self-convolution of the k-Fibonacci sequence</a>, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106.
%F A203579 a(n) = sum(binomial(n,k)*L(k)*L(n-k),k=0..n)/2, n>=0, with L(n)=A000032(n).
%F A203579 E.g.f.: (1/2)*(exp(phi*x)+exp(-(phi-1)*x))^2 =
%F A203579   exp(x)*(cosh(sqrt(5)*x)+1), with the golden section phi:=(1+sqrt(5))/2. (See the e.g.f. of A000032).
%F A203579 a(n) = 2^(n-1)*L(n) + 1.
%F A203579 a(n) = 5*A014335(n) + 2. - _Vladimir Reshetnikov_, Oct 06 2016
%e A203579 With A000032 = {2,1,3,4,7,...},
%e A203579   2*a(4) = 1*2*7 + 4*1*4 + 6*3*3 + 4*4*1 + 1*7*2 = 114.
%t A203579 Array[Sum[Binomial[#, k] LucasL[k] LucasL[# - k], {k, 0, #}]/2 &, 28, 0] (* _Michael De Vlieger_, Dec 28 2020 *)
%Y A203579 Cf. A000032, A014335.
%K A203579 nonn,easy
%O A203579 0,1
%A A203579 _Wolfdieter Lang_, Jan 14 2012