cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203615 Reversal of sigma(n) equals the sum of the reversals of the divisors of n.

This page as a plain text file.
%I A203615 #18 Sep 01 2018 11:01:57
%S A203615 1,2,3,4,5,7,21,938,17797,44045,87001,454085,2217425,8156450,8475789,
%T A203615 3293216050,11130063842,44662814795,77084972662
%N A203615 Reversal of sigma(n) equals the sum of the reversals of the divisors of n.
%C A203615 a(20) > 2.34*10^12. - _Giovanni Resta_, Aug 30 2018
%e A203615 n=17797. Divisors: 1, 13, 37, 481, 1369, 17797.
%e A203615 Sum of the reversals of the divisors: 1+31+73+184+9631+79771=89691.
%e A203615 Sigma(17797)=19698 and its reversal is 89691.
%e A203615 n=454085. Divisors: 1, 5, 197, 461, 985, 2305, 90817, 454085.
%e A203615 Sum of the reversals of the divisors: 1+5+791+164+589+5032+71809+580454=658845.
%e A203615 Sigma(454085)=548856 and its reversal is 658845.
%p A203615 with(numtheory);
%p A203615 Rev:=proc(n)
%p A203615 local a, i, k;
%p A203615   i:=convert(n,base,10); a:=0;
%p A203615   for k from 1 to nops(i) do a:=a*10+i[k]; od;
%p A203615   a;
%p A203615 end:
%p A203615 P:=proc(s)
%p A203615 local a, b, c, j, pfs;
%p A203615 for j from 1 to s do
%p A203615   b:=divisors(j); a:=0;
%p A203615   for c from 1 to nops(b) do a:=a+Rev(b[c]); od;
%p A203615   if Rev(sigma(j))=a then print(j); fi;
%p A203615 od;
%p A203615 end:
%p A203615 P(10000000);
%t A203615 Select[Range[33*10^8],Total[IntegerReverse/@Divisors[#]] == IntegerReverse[ DivisorSigma[ 1,#]]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Apr 09 2018 *)
%Y A203615 Cf. A069942, A195144, A203616.
%K A203615 nonn,base,more
%O A203615 1,2
%A A203615 _Paolo P. Lava_, Jan 20 2012
%E A203615 a(13)-a(16) from _Donovan Johnson_, Jan 29 2012
%E A203615 a(17)-a(19) from _Giovanni Resta_, Aug 30 2018