This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203627 #10 Aug 01 2015 10:02:51 %S A203627 1,1212751,977965238701,788633124418157851,635955328796073362530201, %T A203627 512835649051022518566661395751,413551693065406705688396809494274501, %U A203627 333488912390817262631483541451235285166451,268926125929366270527488184087670639619302551601 %N A203627 Numbers which are both 9-gonal (nonagonal) and 10-gonal (decagonal). %C A203627 As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity, a(n)/a(n-1)) = (2*sqrt(2)+sqrt(7))^8 = 403201+107760*sqrt(14). %H A203627 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (806403, -806403, 1). %F A203627 G.f.: x*(1+406348*x+451*x^2) / ((1-x)*(1-806402*x+x^2)). %F A203627 a(n) = 806402*a(n-1)-a(n-2)+406800. %F A203627 a(n) = 806403*a(n-1)-806403*a(n-2)+a(n-3). %F A203627 a(n) = 1/448*((15+2*sqrt(14))*(2*sqrt(2)+sqrt(7))^(8*n-6)+(15-2*sqrt(14))*(2*sqrt(2)-sqrt(7))^(8*n-6)-226). %F A203627 a(n) = floor(1/448*(15+2*sqrt(14))*(2*sqrt(2)+sqrt(7))^(8*n-6)). %e A203627 The second number that is both nonagonal and decagonal is A001106(589) = A001107(551) = 1212751. Hence a(2) = 1212751. %t A203627 LinearRecurrence[{806403, -806403, 1}, {1, 1212751, 977965238701}, 9] %Y A203627 Cf. A203628, A203629, A001107, A001106. %K A203627 nonn,easy %O A203627 1,2 %A A203627 _Ant King_, Jan 06 2012