A203650 1/25 the number of (n+1) X 3 0..4 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements.
81, 1517, 28057, 519445, 9616161, 178019197, 3295578857, 61009378085, 1129435635441, 20908668388877, 387071560403257, 7165659241743925, 132654210800937921, 2455760042384774557, 45462238622967429257
Offset: 1
Keywords
Examples
Some solutions for n=4: ..3..1..2....3..4..3....2..2..1....0..3..2....2..0..1....4..4..4....1..2..4 ..4..3..1....1..3..2....3..2..2....3..4..3....4..2..0....2..4..4....3..1..2 ..2..4..3....2..1..3....1..3..2....3..3..3....1..4..2....1..2..4....0..3..1 ..2..2..4....3..2..1....0..1..3....4..3..4....0..1..4....1..1..2....2..0..3 ..1..2..2....2..4..2....4..0..1....4..4..1....1..3..1....0..1..1....0..4..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A203656.
Formula
Empirical: a(n) = 17*a(n-1) +28*a(n-2).
Conjectures from Colin Barker, Jun 04 2018: (Start)
G.f.: x*(81 + 140*x) / (1 - 17*x - 28*x^2).
a(n) = (2^(-1-n)*((17-sqrt(401))^n*(-77+5*sqrt(401)) + (17+sqrt(401))^n*(77+5*sqrt(401))))/sqrt(401).
(End)
Comments