A203653 1/25 the number of (n+1)X6 0..4 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.
59049, 9616161, 1780968921, 343812029649, 67213191427593, 13192335511091073, 2592476403527692089, 509649251749126118193, 100202323670442739140969, 19701512822564218199726049, 3873700712374667692894221465
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..0..2..4..1....3..0..4..1..1..2....0..4..0..2..3..2....1..2..4..4..4..4 ..1..1..0..0..2..4....1..3..0..4..1..1....0..0..3..0..2..1....1..1..2..4..1..4 ..1..4..1..0..0..2....4..1..3..0..4..1....2..0..0..0..0..2....1..0..1..2..4..4 ..1..1..0..2..0..0....0..4..1..3..0..4....3..2..0..3..0..0....4..1..2..0..2..4 ..4..1..1..0..3..0....4..0..4..1..3..0....4..3..2..0..1..0....1..4..1..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 249*a(n-1) -8592*a(n-2) -421104*a(n-3) +17434560*a(n-4) -117447936*a(n-5) -1126380544*a(n-6) +12165427200*a(n-7) -13434667008*a(n-8) -89049268224*a(n-9) +101291655168*a(n-10) +94447337472*a(n-11) -82896224256*a(n-12)
Comments