This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203663 #36 Sep 10 2024 20:50:59 %S A203663 432,972,1944,2000,2700,3456,4500,5292,5400,5488,8748,9000,10584, %T A203663 10800,12348,12500,13068,15552,16000,17496,18000,18252,21168,21296, %U A203663 21600,24300,24500,24696,25000,26136 %N A203663 Achilles number whose double is also an Achilles number. %C A203663 Every term is a multiple of 4. %H A203663 Chai Wah Wu, <a href="/A203663/b203663.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..4148 from Robert Israel) %e A203663 15552 is in the sequence because 15552 = 2^6*3^5 (Achilles number) and 15552*2 = 2^7*3^5 is also an Achilles number. %p A203663 filter:= proc(n) local e2,F; %p A203663 e2:= padic:-ordp(n,2); %p A203663 if e2 < 2 then return false fi; %p A203663 F:= map(t -> t[2], ifactors(n/2^e2)[2]); %p A203663 min(F) > 1 and igcd(e2,op(F))=1 and igcd(e2+1,op(F))=1 %p A203663 end proc: %p A203663 select(filter, [seq(i,i=4..10^5,4)]); # _Robert Israel_, Jan 16 2018 %t A203663 achillesQ[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Min[ee] > 1 && GCD@@ee == 1]; %t A203663 Select[Range[4, 10^5, 4], achillesQ[#] && achillesQ[2#]&] (* _Jean-François Alcover_, Sep 25 2020 *) %o A203663 (PARI) achilles(n) = { n>1 & vecmin(factor(n)[, 2])>1 & !ispower(n) } \\ _M. F. Hasler_, 2010 %o A203663 { for (n=1, 10^6, if (achilles(n)==1 && achilles(2*n)==1, print1(n,", "))); } \\ _Antonio Roldán_, Oct 07 2012 %o A203663 (Python) %o A203663 # uses program in A052486 %o A203663 from itertools import count, islice %o A203663 from math import gcd %o A203663 from sympy import factorint %o A203663 def A203663_gen(): # generator of terms %o A203663 return map(lambda x:x[0],filter(lambda x:all(d>1 for d in x[1]) and gcd(*x[1])==1,map(lambda x: (x,factorint(x<<1).values()),(A052486(i) for i in count(1))))) %o A203663 A203663_list = list(islice(A203663_gen(),30)) # _Chai Wah Wu_, Sep 10 2024 %Y A203663 Cf. A052486, A143610, A203662. %K A203663 nonn %O A203663 1,1 %A A203663 _Antonio Roldán_, Jan 04 2012