A203690 v(n+1)/v(n), where v=A203689.
5, 1480, 204811920, 44845458424326144, 38524837563190678680163123200, 274281830629678279850073754564550983680000000, 30490404582529065278831553253825833486757227887272069693440000000
Offset: 1
Keywords
Programs
-
Mathematica
f[j_] := j!; z = 8; u[n_] := Product[f[j]^2 + f[k]^2, {j, 1, k - 1}] v[n_] := Product[u[n], {k, 2, n}] Table[v[n], {n, 1, z}] (* A203689 *) Table[v[n + 1]/v[n], {n, 1, z}] (* A203690 *) Table[Product[k!^2 + (n+1)!^2, {k, 1, n}], {n, 1, 10}] (* Vaclav Kotesovec, Nov 21 2023 *)
Formula
From Vaclav Kotesovec, Nov 21 2023: (Start)
a(n) ~ (n+1)!^(2*n).
a(n) ~ (2*Pi)^n * n^(2*n^2 + 3*n) / exp(2*n^2 - 13/6). (End)
Comments