This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203715 #8 Mar 21 2016 07:41:28 %S A203715 1,3,6,34,120,1096,5040,56848,362880,5451136,39916800,688876288, %T A203715 6227020800,130789805056,1307674368000,29497569445888,355687428096000, %U A203715 9746045395173376,121645100408832000,3451902721622867968,51090942171709440000,1686006043164464644096 %N A203715 E.g.f.: Sum_{n>=1} log((1 + exp(2*x^n))/2). %F A203715 a(2*n-1) = (2*n-1)!. %e A203715 E.g.f.: A(x) = x + 3*x^2/2! + x^3 + 34*x^4/4! + x^5 + 1096*x^6/6! + x^7 + 56848*x^8/8! + x^9 + 5451136*x^10/10! + x^11 +... %e A203715 where A(x) = log((1+exp(2*x))/2) + log((1+exp(2*x^2))/2) + log((1+exp(2*x^3))/2) + log((1+exp(2*x^4))/2) +... %e A203715 The exponentiation of the e.g.f. begins: %e A203715 exp(A(x)) = 1 + x + 4*x^2/2! + 16*x^3/3! + 104*x^4/4! + 696*x^5/5! + 6272*x^6/6! + 57856*x^7/7! + 652416*x^8/8! +...+ A203716(n)*x^n/n! +... %t A203715 nmax = 25; Rest[Range[0, nmax]! * CoefficientList[Series[Sum[Log[1/(1 - Tanh[x^k])], {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Mar 21 2016 *) %o A203715 (PARI) {a(n)=n!*polcoeff(sum(m=1,n,log((1+exp(2*x^m+x*O(x^n)))/2)),n)} %Y A203715 Cf. A203709, A203716 (exp). %K A203715 nonn %O A203715 1,2 %A A203715 _Paul D. Hanna_, Jan 04 2012