cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203750 Square root of v(2n)/v(2n-1), where v=A203748.

This page as a plain text file.
%I A203750 #15 Jul 13 2021 01:54:30
%S A203750 1,14,741,87024,18068505,5845458528,2718866959893,1719570636306432,
%T A203750 1419543579377755377,1482454643117692608000,1910657530214126188243749,
%U A203750 2978927846824451394372304896,5526241720077994999033052180169
%N A203750 Square root of v(2n)/v(2n-1), where v=A203748.
%C A203750 See A203748.
%F A203750 Define a sequence f(n) by means of the double product f(n) = |Product_{1 <= a, b <= n} (a - b*w)|, where w = exp(2*Pi*i/3) is a primitive cube root of unity. So f(n) is a sort of 2-dimensional analog of n!. Then a(n) = f(n)/(f(1)*f(n-1)) is the first column of the triangle ( f(n)/(f(k)*f(n-k)) ) 0<=k<=n, an analog of Pascal's triangle. - _Peter Bala_, Sep 21 2013
%e A203750 Triangle ( f(n)/(f(k)*f(n-k)) ), 0 <= k <= n, begins
%e A203750   1;
%e A203750   1,     1;
%e A203750   1,    14,        1;
%e A203750   1,   741,      741,      1;
%e A203750   1, 87024,  4606056,  87024,  1;
%e A203750 ... - _Peter Bala_, Sep 21 2013
%t A203750 (See A203748.)
%Y A203750 Cf. A203748, A203774.
%K A203750 nonn
%O A203750 1,2
%A A203750 _Clark Kimberling_, Jan 05 2012