cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203799 G.f.: Sum_{n>=0} (n-2*x)^n * x^n / (1 + n*x - 2*x^2)^n.

This page as a plain text file.
%I A203799 #11 Dec 17 2024 15:21:57
%S A203799 1,1,1,8,48,312,2280,18720,171360,1733760,19232640,232243200,
%T A203799 3033676800,42631142400,641383142400,10287038361600,175228365312000,
%U A203799 3159341273088000,60111175348224000,1203646256676864000,25302180885037056000,557134559872450560000,12823826485099069440000
%N A203799  G.f.: Sum_{n>=0} (n-2*x)^n * x^n / (1 + n*x - 2*x^2)^n.
%F A203799 a(n) = (n^2 + n - 4)/2 * (n-1)!, for n>1 with a(0)=a(1)=1.
%F A203799 E.g.f.: 1/2 + 1/(2*(1-x)^2) + 2*x + 2*log(1-x).
%F A203799 E.g.f.: Sum_{n>=0} a(n+1)*x^n/n! = 1/(1-x)^3 - 2*x/(1-x).
%e A203799 G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 48*x^4 + 312*x^5 + 2280*x^6 +...
%e A203799 where
%e A203799 A(x) = 1 + (1-2*x)*x/(1+x-2*x^2) + (2-2*x)^2*x^2/(1+2*x-2*x^2)^2 + (3-2*x)^3*x^3/(1+3*x-2*x^2)^3 + (4-2*x)^4*x^4/(1+4*x-2*x^2)^4 + (5-2*x)^5*x^5/(1+5*x-2*x^2)^5 +...
%o A203799 (PARI) {a(n)=polcoeff( sum(m=0, n, (m-2*x)^m*x^m/(1+m*x-2*x^2 +x*O(x^n))^m), n)}
%o A203799 for(n=0, 30, print1(a(n), ", "))
%o A203799 (PARI) {a(n)=if(n==0||n==1, 1, (n^2 + n - 4)/2 * (n-1)!)}
%o A203799 for(n=0, 30, print1(a(n), ", "))
%o A203799 (PARI) {a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) + 2*x + 2*log(1-x +x*O(x^n)), n)}
%o A203799 for(n=0, 30, print1(a(n), ", "))
%Y A203799 Cf. A202365, A187742.
%K A203799 nonn
%O A203799 0,4
%A A203799 _Paul D. Hanna_, Jan 09 2013