cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203801 G.f.: Product_{n>=1} (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).

This page as a plain text file.
%I A203801 #11 Feb 16 2025 08:33:16
%S A203801 1,1,2,7,9,27,53,109,206,463,907,1756,3591,6849,13706,27132,51477,
%T A203801 99168,195160,366269,707173,1355524,2558372,4836092,9186600,17245564,
%U A203801 32428375,61057276,113946770,212495896,397836811,737325660,1368659832,2544085015,4694930535
%N A203801 G.f.: Product_{n>=1} (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).
%C A203801 Analog to Euler's identity: Product_{n>=1} (1+x^n) = Product_{n>=1} 1/(1-x^(2*n-1)), which is the g.f. for the number of partitions into distinct parts.
%H A203801 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerIdentity.html">Euler Identity.</a>
%F A203801 G.f.: Product_{n>=1} 1/(1 - Lucas(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)).
%F A203801 G.f.: exp( Sum_{n>=1} A000593(n) * Lucas(n) * x^n/n ) where A000593(n) = sum of odd divisors of n.
%F A203801 a(n) = (1/n)*Sum_{k=1..n} A000593(k)*Lucas(k)*a(n-k) for n>0, with a(0) = 1.
%e A203801 G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 9*x^4 + 27*x^5 + 53*x^6 +...
%e A203801 where A(x) = (1+x-x^2) * (1+3*x^2+x^4) * (1+4*x^3-x^6) * (1+7*x^4+x^8) * (1+11*x^5-x^10) * (1+18*x^6+x^12) *...* (1 + Lucas(n)*x^n + (-1)^n*x^(2*n)) *...
%e A203801 and 1/A(x) = (1-x-x^2) * (1-4*x^3-x^6) * (1-11*x^5-x^10) * (1-29*x^7-x^14) * (1-76*x^9-x^18) * (1-199*x^11-x^22) *...* (1 - Lucas(2*n-1)*x^(2*n-1) + (-1)^n*x^(4*n-2)) *...
%e A203801 Also, the logarithm of the g.f. equals the series:
%e A203801 log(A(x)) = x + 1*3*x^2/2 + 4*4*x^3/3 + 1*7*x^4/4 + 6*11*x^5/5 + 4*18*x^6/6 + 8*29*x^7/7 + 1*47*x^8/8 +...+ A000593(n)*Lucas(n)*x^n/n +...
%t A203801 max = 40; s = Product[1 + LucasL[n]*x^n + (-1)^n*x^(2*n), {n, 1, max}] + O[x]^max; CoefficientList[s, x] (* _Jean-François Alcover_, Dec 14 2015 *)
%o A203801 (PARI) /* Subroutine used in PARI programs below: */
%o A203801 {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
%o A203801 (PARI) {a(n)=polcoeff(prod(k=1,n,1+Lucas(k)*x^k+(-1)^k*x^(2*k) +x*O(x^n)),n)}
%o A203801 (PARI) {a(n)=polcoeff(1/prod(k=1,n,1-Lucas(2*k-1)*x^(2*k-1)-x^(4*k-2) +x*O(x^n)),n)}
%o A203801 (PARI) /* Exponential form using sum of odd divisors of n: */
%o A203801 {A000593(n)=if(n<1, 0, sumdiv(n, d, (-1)^(d+1)*n/d))}
%o A203801 {a(n)=polcoeff(exp(sum(k=1, n, A000593(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)}
%Y A203801 Cf. A156234, A203860, A203850, A000204, A000593.
%K A203801 nonn
%O A203801 0,3
%A A203801 _Paul D. Hanna_, Jan 11 2012