cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203829 Number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

225, 1971, 17289, 151659, 1330353, 11669859, 102368025, 897972507, 7877016513, 69097203603, 606120799401, 5316892787403, 46639793487825, 409124355815619, 3588839615364921, 31481307826653051, 276154091209147617
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2012

Keywords

Comments

Column 2 of A203835.

Examples

			Some solutions for n=4:
..1..1..2....0..0..2....2..1..0....0..0..2....1..1..2....2..2..2....2..0..1
..0..1..1....0..0..0....0..2..1....0..0..0....1..1..1....1..2..0....0..0..0
..2..0..1....0..1..0....1..0..2....1..0..0....1..1..1....2..2..2....2..0..1
..1..2..0....0..0..1....1..1..0....1..1..0....0..1..2....1..2..1....2..2..0
..0..1..2....0..2..0....2..1..1....0..1..1....2..0..1....2..0..2....2..0..0
		

Crossrefs

Cf. A203835.

Formula

Empirical: a(n) = 9*a(n-1) -2*a(n-2).
Conjectures from Colin Barker, Jun 05 2018: (Start)
G.f.: 9*x*(25 - 6*x) / (1 - 9*x + 2*x^2).
a(n) = (9*2^(-1-n)*((9-sqrt(73))^n*(-23+3*sqrt(73)) + (9+sqrt(73))^n*(23+3*sqrt(73)))) / sqrt(73).
(End)