cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A203829 Number of (n+1) X 3 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

225, 1971, 17289, 151659, 1330353, 11669859, 102368025, 897972507, 7877016513, 69097203603, 606120799401, 5316892787403, 46639793487825, 409124355815619, 3588839615364921, 31481307826653051, 276154091209147617
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2012

Keywords

Comments

Column 2 of A203835.

Examples

			Some solutions for n=4:
..1..1..2....0..0..2....2..1..0....0..0..2....1..1..2....2..2..2....2..0..1
..0..1..1....0..0..0....0..2..1....0..0..0....1..1..1....1..2..0....0..0..0
..2..0..1....0..1..0....1..0..2....1..0..0....1..1..1....2..2..2....2..0..1
..1..2..0....0..0..1....1..1..0....1..1..0....0..1..2....1..2..1....2..2..0
..0..1..2....0..2..0....2..1..1....0..1..1....2..0..1....2..0..2....2..0..0
		

Crossrefs

Cf. A203835.

Formula

Empirical: a(n) = 9*a(n-1) -2*a(n-2).
Conjectures from Colin Barker, Jun 05 2018: (Start)
G.f.: 9*x*(25 - 6*x) / (1 - 9*x + 2*x^2).
a(n) = (9*2^(-1-n)*((9-sqrt(73))^n*(-23+3*sqrt(73)) + (9+sqrt(73))^n*(23+3*sqrt(73)))) / sqrt(73).
(End)

A203830 Number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

1125, 17289, 270333, 4238721, 66490965, 1043088057, 16363800045, 256713156657, 4027283591877, 63179519387625, 991152375416541, 15549074160922593, 243931925405440053, 3826773454026870297, 60033942027766295757
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2012

Keywords

Comments

Column 3 of A203835.

Examples

			Some solutions for n=4:
..2..1..0..2....1..1..0..1....1..2..2..1....1..2..1..1....2..1..0..0
..2..2..1..0....2..1..1..0....2..0..2..2....1..1..1..0....1..1..1..0
..1..2..2..1....1..1..0..0....2..2..1..2....1..2..1..1....2..1..2..1
..0..1..2..2....2..1..1..0....1..2..2..1....0..1..2..1....2..2..2..2
..2..0..1..2....0..2..1..1....1..1..2..2....2..0..1..1....1..2..1..2
		

Crossrefs

Cf. A203835.

Formula

Empirical: a(n) = 19*a(n-1) -54*a(n-2) +32*a(n-3).
Empirical g.f.: 9*x*(125 - 454*x + 288*x^2) / (1 - 19*x + 54*x^2 - 32*x^3). - Colin Barker, Jun 05 2018

A203831 Number of (n+1)X5 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

5625, 151659, 4238721, 119606211, 3383285769, 95763046491, 2710984443345, 76749227497395, 2172829037910489, 61514609224652235, 1741531281545538081, 49304251065416837283, 1395845890054082693289, 39517602012270762571323
Offset: 1

Views

Author

R. H. Hardin Jan 06 2012

Keywords

Comments

Column 4 of A203835

Examples

			Some solutions for n=4
..2..1..2..1..0....2..0..2..2..0....1..0..1..2..0....0..0..0..1..2
..1..2..1..2..1....1..2..1..2..2....1..1..2..0..2....1..0..2..0..1
..1..1..1..1..2....2..1..0..1..2....2..1..1..2..2....2..1..0..0..0
..2..1..2..1..1....1..1..1..1..1....2..2..1..1..2....2..2..1..0..0
..2..2..2..2..1....2..1..1..1..0....2..1..0..1..1....1..2..2..1..0
		

Formula

Empirical: a(n) = 31*a(n-1) -24*a(n-2) -1612*a(n-3) +3816*a(n-4) +1152*a(n-5) -2784*a(n-6) +256*a(n-7)

A203832 Number of (n+1)X6 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

28125, 1330353, 66490965, 3383285769, 173185290765, 8882824128417, 455911325162757, 23404859123410809, 1201610596654827837, 61692467471143085457, 3167408545022070490293, 162621217966800381937641
Offset: 1

Views

Author

R. H. Hardin Jan 06 2012

Keywords

Comments

Column 5 of A203835

Examples

			Some solutions for n=4
..2..0..1..0..0..0....1..2..2..2..0..1....2..0..1..2..0..2....2..1..0..2..1..2
..2..2..0..2..0..0....0..1..2..1..2..0....1..2..0..1..2..1....2..2..1..0..2..1
..2..0..0..0..2..0....2..0..1..0..1..2....2..2..2..0..1..2....0..2..2..1..0..2
..1..2..0..2..2..2....2..2..0..0..0..1....2..2..0..0..0..1....0..0..2..2..1..0
..1..1..2..2..0..2....0..2..2..0..0..0....2..0..1..0..0..0....1..0..0..2..2..1
		

Formula

Empirical: a(n) = 77*a(n-1) -1444*a(n-2) +5860*a(n-3) +38744*a(n-4) -300016*a(n-5) +339296*a(n-6) +1286720*a(n-7) -2655360*a(n-8) -56832*a(n-9) +1682944*a(n-10) -149504*a(n-11) -163840*a(n-12)

A203833 Number of (n+1)X7 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

140625, 11669859, 1043088057, 95763046491, 8882824128417, 827309554361235, 77176081545485769, 7204002753036584331, 672627208587089667633, 62808488037897381676611, 5865153683164077390051033
Offset: 1

Views

Author

R. H. Hardin Jan 06 2012

Keywords

Comments

Column 6 of A203835

Examples

			Some solutions for n=4
..0..2..0..1..2..2..1....1..2..2..1..2..2..1....2..2..1..1..1..1..0
..1..0..2..0..1..2..2....0..1..2..2..1..2..2....0..2..2..1..1..1..1
..2..1..0..2..0..1..2....1..2..2..2..2..2..1....2..1..2..2..1..1..0
..2..2..1..0..2..0..1....1..1..2..0..2..1..2....1..0..1..2..2..1..1
..1..2..2..1..0..2..0....2..1..1..2..2..2..2....2..1..1..1..2..2..1
		

Formula

Empirical: a(n) = 117*a(n-1) -614*a(n-2) -193608*a(n-3) +4171896*a(n-4) +11415328*a(n-5) -842180224*a(n-6) +3384845504*a(n-7) +50528534400*a(n-8) -356768428544*a(n-9) -786566761984*a(n-10) +10681051645952*a(n-11) -6785526038528*a(n-12) -118510105321472*a(n-13) +197530250887168*a(n-14) +559297782349824*a(n-15) -1309510355714048*a(n-16) -1087672042455040*a(n-17) +3564507406925824*a(n-18) +719985279238144*a(n-19) -4461650060509184*a(n-20) +91947477762048*a(n-21) +2549613680656384*a(n-22) -206006306996224*a(n-23) -619282299879424*a(n-24) +65421579386880*a(n-25) +47138239152128*a(n-26) -8245531901952*a(n-27) +260919263232*a(n-28)

A203834 Number of (n+1)X8 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

703125, 102368025, 16363800045, 2710984443345, 455911325162757, 77176081545485769, 13102412661293146461, 2227336934732831112705, 378855914806064843998965, 64457851287783959073904761
Offset: 1

Views

Author

R. H. Hardin Jan 06 2012

Keywords

Comments

Column 7 of A203835

Examples

			Some solutions for n=4
..0..1..1..1..0..1..0..1....2..1..2..1..2..2..1..2....0..2..0..2..1..0..1..2
..1..1..0..1..1..1..1..1....1..1..1..2..1..2..2..2....0..0..1..0..2..1..2..1
..0..1..1..0..1..0..1..1....2..1..1..1..1..1..2..0....0..2..0..2..0..2..0..2
..0..0..1..1..2..1..1..2....0..2..1..1..0..1..1..2....2..1..2..2..2..0..1..0
..2..0..0..1..1..1..2..1....1..0..2..1..1..0..1..1....0..2..2..2..0..1..2..1
		

Formula

Empirical: a(n) = 321*a(n-1) -30800*a(n-2) +646412*a(n-3) +57495384*a(n-4) -3528677216*a(n-5) +48840455680*a(n-6) +1293892771200*a(n-7) -46168359802496*a(n-8) +153554511877632*a(n-9) +11732788319380992*a(n-10) -149783634302650368*a(n-11) -931190086396592128*a(n-12) +29404198495960715264*a(n-13) -73147591332793507840*a(n-14) -2572222703124047740928*a(n-15) +19123948984870878904320*a(n-16) +92710411783957869887488*a(n-17) -1483295392127718275678208*a(n-18) +924867485862186465099776*a(n-19) +56882434368973583131082752*a(n-20) -199587779401797560325636096*a(n-21) -1081950148339617110113124352*a(n-22) +7369255550528822850694938624*a(n-23) +5634649025352042522620198912*a(n-24) -135393722015600803494154469376*a(n-25) +160930590951530186280345272320*a(n-26) +1359078021667038709786829914112*a(n-27) -3593767512317326047548465479680*a(n-28) -6780744462767436322379919261696*a(n-29) +33631723566629021375379911213056*a(n-30) +4382864697797727461600474955776*a(n-31) -172892976142818521449511776157696*a(n-32) +133837479870175409501771210424320*a(n-33) +499754073311055081171809317421056*a(n-34) -752369413021864126247577159991296*a(n-35) -720913979854196522116003139682304*a(n-36) +1941189765328453870672793464471552*a(n-37) +146805373019422291201604165042176*a(n-38) -2708469432199470262222909958258688*a(n-39) +1044091152314328966537324611502080*a(n-40) +1999110104833115118742392008605696*a(n-41) -1480775091171665406901808151920640*a(n-42) -643245573018942475967014125961216*a(n-43) +849911593718214284698529596178432*a(n-44) -5842702324417519538385813766144*a(n-45) -222422986108668574300165810159616*a(n-46) +49319957379184410602588178743296*a(n-47) +22937100123360726125626947272704*a(n-48) -9343401762268071580284961685504*a(n-49) -119551921881909273136556146688*a(n-50) +463472043935122372701261398016*a(n-51) -63202702506904970433543536640*a(n-52) +1968883131115050477690028032*a(n-53) +24175560301554771538477056*a(n-54)

A203828 Number of (n+1)X(n+1) 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements.

Original entry on oeis.org

45, 1971, 270333, 119606211, 173185290765, 827309554361235, 13102412661293146461, 690154670186627261773347
Offset: 1

Views

Author

R. H. Hardin Jan 06 2012

Keywords

Comments

Diagonal of A203835

Examples

			Some solutions for n=4
..2..2..1..2..2....2..1..0..2..1....0..1..2..2..0....0..0..0..1..2
..2..1..2..1..2....2..2..1..0..2....0..0..1..2..2....1..0..2..0..1
..1..2..1..1..1....1..2..2..1..0....2..0..0..1..2....2..1..0..0..0
..1..1..0..1..2....0..1..2..2..1....0..2..0..0..1....2..2..1..0..0
..1..2..1..1..1....0..0..1..2..2....0..0..2..0..0....1..2..2..1..0
		
Showing 1-7 of 7 results.