This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203897 #31 Jan 17 2023 16:49:52 %S A203897 1,1111,110111111,1111011011,11000111111,110011011011,110111101111, %T A203897 111100011011,111101010101,111101111011,1010011111111,1010101001111, %U A203897 1010101101101,1010111100101,1011111001111,1100000111111,1100110011011,1111001011111,1111001101111 %N A203897 Nonprime numbers k >= 1 such that k and phi(k) contain only digits 0 and 1. %C A203897 From _Robert Israel_, Feb 26 2018: (Start) %C A203897 Many terms are semiprimes of the form p*q where p = 11 or 101 and q is in A020449. %C A203897 The first term after 1 that is not a semiprime is a(199) = 111100111111111111 = 11*101*100000100010001. %C A203897 The first term after 1 that is not divisible by 11 or 101 is a(1023) = 1110010101001011111101 = 11111101 * 99901000000001. (End) %H A203897 Robert Israel, <a href="/A203897/b203897.txt">Table of n, a(n) for n = 1..2000</a> %e A203897 a(3) = 110111111 = 11*10010101 is in the sequence because phi(110111111) = 100101000, which contains digits 0 and 1 only. %e A203897 Remark: phi(11)=10, phi(10010101)=10010100, but 100101000 = 2*3*5*61*547. %p A203897 with(numtheory): T:=array(1..23):k:=1:a:={0,1}:b:={1}:for a12 from 0 to 1 do: for a11 from 0 to 1 do: for a10 from 0 to 1 do: for a9 from 0 to 1 do: for a8 from 0 to 1 do: for a7 from 0 to 1 do: for a6 from 0 to 1 do: for a5 from 0 to 1 do: for a4 from 0 to 1 do: for a3 from 0 to 1 do: for a2 from 0 to 1 do: for a1 from 0 to 1 do: for a0 from 0 to 1 do:n:=a0+a1*10+a2*10^2+ a3*10^3+ a4*10^4+ a5*10^5+ a6*10^6+ a7*10^7+ a8*10^8+ a9*10^9 + a10*10^10+ a11*10^11+ a12*10^12: m:=phi(n):x:=convert(convert(m,base,10),set): if type(n,prime)=false and (a union x = a or a union x = b) then T[k]:=n:k:=k+1:else fi:od: od: od: od: od: od: od: od: od:od:od:od:od: print(T): %p A203897 Res:= NULL: count:= 0: %p A203897 for q from 1 while count < 100 do %p A203897 L:= convert(q,base,2); %p A203897 n:=add(L[i]*10^(i-1),i=1..nops(L)); %p A203897 if isprime(n) then next fi; %p A203897 r:= numtheory:-phi(n); %p A203897 if max(convert(r,base,10))=1 then %p A203897 Res:= Res, n; %p A203897 count:= count+1; %p A203897 fi %p A203897 od: %p A203897 Res; # _Robert Israel_, Feb 26 2018 %t A203897 d = Table[FromDigits[IntegerDigits[n, 2]], {n, 10000}]; Select[d, ! PrimeQ[#] && Max[IntegerDigits[EulerPhi[#]]] == 1 &] (* _T. D. Noe_, Jan 11 2012 *) %t A203897 Rest[Select[FromDigits/@Tuples[{0,1},13],!PrimeQ[#]&&Max[IntegerDigits[ EulerPhi[ #]]] <2&]] (* _Harvey P. Dale_, Jan 17 2023 *) %o A203897 (PARI) lista(nn) = {for (n=1, nn, x = fromdigits(binary(n), 10); if (! isprime(x) && (vecmax(digits(eulerphi(x))) < 2), print1(x, ", ")););} \\ _Michel Marcus_, Jun 12 2017 %Y A203897 Cf. A000010, A020449, A203304. %K A203897 nonn,base %O A203897 1,2 %A A203897 _Michel Lagneau_, Jan 07 2012 %E A203897 Incorrect comments deleted by _Robert Israel_, Feb 26 2018 %E A203897 Definition edited by _N. J. A. Sloane_, Jan 17 2023 at the suggestion of _Harvey P. Dale_.