This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203904 #5 Mar 30 2012 18:58:07 %S A203904 1,1,2,2,9,9,3,22,48,32,24,250,875,1250,625,10,137,675,1530,1620,648, %T A203904 720,12348,79576,252105,420175,352947,117649,315,6534,52528,216608, %U A203904 501760,659456,458752,131072,4480,109584,1063116,5450004,16365321 %N A203904 Triangular array T; for n>0, row n shows the coefficients of a reduced polynomial having zeros -k/(n+1) for k=1,2,...,n. %C A203904 For n>0, the zeros of the polynomial represented by row n+1 interlace the zeros of the polynomial for row n; see the Example section. %C A203904 ... %C A203904 T(n,1): A119619 %C A203904 T(n,n): A056916. %e A203904 First five rows(counting the top row as row 0): %e A203904 1 %e A203904 1...2.................representing 1+2x %e A203904 1...9...9.............representing 2+9x+9x^2 %e A203904 3...22..48...32 %e A203904 24...250...875...1250...625 %e A203904 Zeros corresponding to rows 1 to 4: %e A203904 .................-1/2 %e A203904 ............-2/3......-1/3 %e A203904 ......-3/4.......-1/2.......-1/4 %e A203904 -4/5........-3/5......-2/5.......-1/5 %e A203904 Interlace property for successive rows illustrated by %e A203904 1/5 < 1/4 < 2/5 < 1/2 < 3/5 < 3/4 < 4/5. %t A203904 p[n_, x_] := Product[(n*x + k)/GCD[n, k], {k, 1, n - 1}] %t A203904 Table[CoefficientList[p[n, x], x], {n, 1, 10}] %t A203904 TableForm[%] (* A203904 triangle *) %t A203904 Flatten[%%] (* A203904 sequence *) %Y A203904 Cf. A056856, A119619, A056916, A007305/A007306 (Farey fractions). %K A203904 nonn,tabl %O A203904 1,3 %A A203904 _Clark Kimberling_, Jan 08 2012