This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203947 #6 Jul 12 2012 00:39:54 %S A203947 1,0,0,1,1,1,1,0,0,1,0,1,2,1,0,1,1,1,1,1,1,1,0,1,3,1,0,1,0,1,2,1,1,2, %T A203947 1,0,1,1,1,2,3,2,1,1,1,1,0,1,3,1,1,3,1,0,1,0,1,2,1,2,4,2,1,2,1,0,1,1, %U A203947 1,2,3,2,2,3,2,1,1,1,1,0,1,3,1,2,5,2,1,3,1,0,1,0,1,2,1,2,4,2,2 %N A203947 Symmetric matrix based on (1,0,1,1,0,1,1,0,1,...), by antidiagonals. %C A203947 Let s be the periodic sequence (1,0,1,1,0,1,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A203947 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203948 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %e A203947 Northwest corner: %e A203947 1 0 1 1 0 1 1 0 %e A203947 0 1 0 1 1 0 1 1 %e A203947 1 0 2 1 1 0 1 1 %e A203947 1 1 1 3 1 2 3 1 %e A203947 0 1 1 1 3 1 2 3 %e A203947 1 0 2 2 1 4 2 2 %e A203947 1 1 1 3 2 2 5 2 %t A203947 t = {1, 0, 1}; %t A203947 t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}]; %t A203947 s[k_] := t1[[k]]; %t A203947 U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ %t A203947 Table[s[k], {k, 1, 15}]]; %t A203947 L = Transpose[U]; M = L.U; TableForm[M] (* A203947 *) %t A203947 m[i_, j_] := M[[i]][[j]]; %t A203947 Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] %Y A203947 Cf. A203948, A202453. %K A203947 nonn,tabl %O A203947 1,13 %A A203947 _Clark Kimberling_, Jan 08 2012