This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203948 #10 Jul 12 2012 00:39:54 %S A203948 1,-1,1,-2,1,1,-4,4,-1,1,-7,13,-7,1,1,-11,35,-31,10,-1,1,-16,74,-107, %T A203948 61,-14,1,1,-22,147,-308,275,-111,19,-1,1,-29,256,-763,1001,-629,186, %U A203948 -24,1,1,-37,428,-1683,3013,-2721,1264,-291,30,-1,1,-46 %N A203948 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203947. %C A203948 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A203948 (For references regarding interlacing roots, see A202605.) %e A203948 Top of the array: %e A203948 1...-1 %e A203948 1...-2....1 %e A203948 1...-4....4....-1 %e A203948 1...-7....13...-7....1 %e A203948 1...-11...35...-31...10...-1 %t A203948 t = {1, 0, 1}; t1 = Flatten[{t, t, t, t, t, t, t}]; %t A203948 f[k_] := t1[[k]]; %t A203948 U[n_] := %t A203948 NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ %t A203948 Table[f[k], {k, 1, n}]]; %t A203948 L[n_] := Transpose[U[n]]; %t A203948 p[n_] := CharacteristicPolynomial[L[n].U[n], x]; %t A203948 c[n_] := CoefficientList[p[n], x] %t A203948 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A203948 Table[c[n], {n, 1, 12}] %t A203948 Flatten[%] %t A203948 TableForm[Table[c[n], {n, 1, 10}]] %Y A203948 Cf. A203947, A202605. %K A203948 tabl,sign %O A203948 1,4 %A A203948 _Clark Kimberling_, Jan 08 2012