This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203949 #6 Jul 12 2012 00:39:54 %S A203949 1,1,1,0,2,0,1,1,1,1,1,1,2,1,1,0,2,1,1,2,0,1,1,1,3,1,1,1,1,1,2,2,2,2, %T A203949 1,1,0,2,1,1,4,1,1,2,0,1,1,1,3,2,2,3,1,1,1,1,1,2,2,2,4,2,2,2,1,1,0,2, %U A203949 1,1,4,2,2,4,1,1,2,0,1,1,1,3,2,2,5,2,2,3,1,1,1,1,1,2,2,2,4,3,3 %N A203949 Symmetric matrix based on (1,1,0,1,1,0,1,1,0,...), by antidiagonals. %C A203949 Let s be the periodic sequence (1,1,0,1,1,0,...) and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A203949 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A203950 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %e A203949 Northwest corner: %e A203949 1 1 0 1 1 0 1 1 0 1 %e A203949 1 2 1 1 2 1 1 2 1 1 %e A203949 0 1 2 1 1 2 1 1 2 1 %e A203949 1 1 1 3 2 1 3 2 1 3 %e A203949 1 2 1 2 4 2 2 4 2 2 %e A203949 0 1 2 1 2 4 2 2 4 2 %e A203949 1 1 1 3 2 2 5 3 2 5 %t A203949 t = {1, 1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t}]; %t A203949 s[k_] := t1[[k]]; %t A203949 U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ %t A203949 Table[s[k], {k, 1, 15}]]; %t A203949 L = Transpose[U]; M = L.U; TableForm[M] (* A203949 *) %t A203949 m[i_, j_] := M[[i]][[j]]; %t A203949 Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] %Y A203949 Cf. A203950, A202453. %K A203949 nonn,tabl %O A203949 1,5 %A A203949 _Clark Kimberling_, Jan 08 2012