A203951 Symmetric matrix based on (1,0,0,0,1,0,0,0,...), by antidiagonals.
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Northwest corner: 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 2 0 0 0 2 0 0 1 0 0 0 2 0 0 0 2 0 0 1 0 0 0 2 0 0 0 0 0 0 1 0 0 0 2 0 0 1 0 0 0 2 0 0 0 3 0
Programs
-
Mathematica
t = {1, 0, 0, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t}]; f[k_] := t1[[k]]; U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ Table[f[k], {k, 1, n}]]; L[n_] := Transpose[U[n]]; p[n_] := CharacteristicPolynomial[L[n].U[n], x]; c[n_] := CoefficientList[p[n], x] TableForm[Flatten[Table[p[n], {n, 1, 10}]]] Table[c[n], {n, 1, 12}] Flatten[%] (* A203952 *)
Comments