This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203952 #14 Feb 21 2023 07:34:25 %S A203952 1,-1,1,-2,1,1,-3,3,-1,1,-4,6,-4,1,1,-6,13,-13,6,-1,1,-8,24,-34,24,-8, %T A203952 1,1,-10,39,-75,75,-39,10,-1,1,-12,58,-144,195,-144,58,-12,1,1,-14,81, %U A203952 -250,444,-459,271,-89,15,-1,1,-16,108,-400,886 %N A203952 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203949. %C A203952 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A203952 (For references regarding interlacing roots, see A202605.) %e A203952 Top of the array: %e A203952 1...-1 %e A203952 1...-3....1 %e A203952 1...-6....5....-1 %e A203952 1...-13...18...-8....1 %e A203952 1...-24...52...-40...12...-1 %t A203952 t = {1, 1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t}]; %t A203952 f[k_] := t1[[k]]; %t A203952 U[n_] := %t A203952 NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ %t A203952 Table[f[k], {k, 1, n}]]; %t A203952 L[n_] := Transpose[U[n]]; %t A203952 p[n_] := CharacteristicPolynomial[L[n].U[n], x]; %t A203952 c[n_] := CoefficientList[p[n], x] %t A203952 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A203952 Table[c[n], {n, 1, 12}] (* A203950 *) %t A203952 Flatten[%] %t A203952 TableForm[Table[c[n], {n, 1, 10}]] %Y A203952 Cf. A203951, A202605. %K A203952 tabf,sign %O A203952 1,4 %A A203952 _Clark Kimberling_, Jan 08 2012