This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203954 #10 Jul 12 2012 00:39:54 %S A203954 1,-1,1,-6,1,1,-20,12,-1,1,-70,75,-22,1,1,-264,406,-200,33,-1,1,-1034, %T A203954 2085,-1470,430,-48,1,1,-4108,10296,-9600,4116,-816,64,-1,1,-16398, %U A203954 49231,-57574,33135,-9786,1410,-84,1,1,-65552,229482 %N A203954 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203953. %C A203954 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A203954 (For references regarding interlacing roots, see A202605.) %e A203954 Top of the array: %e A203954 1...-1 %e A203954 1...-6.....1 %e A203954 1...-20....12....-1 %e A203954 1...-70....75....-22....1 %e A203954 1...-264...406...-200...33...-1 %t A203954 t = {1, 2}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}]; %t A203954 f[k_] := t1[[k]]; %t A203954 U[n_] := %t A203954 NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ %t A203954 Table[f[k], {k, 1, n}]]; %t A203954 L[n_] := Transpose[U[n]]; %t A203954 p[n_] := CharacteristicPolynomial[L[n].U[n], x]; %t A203954 c[n_] := CoefficientList[p[n], x] %t A203954 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A203954 Table[c[n], {n, 1, 12}] %t A203954 Flatten[%] (* A203954 *) %t A203954 TableForm[Table[c[n], {n, 1, 10}]] %Y A203954 Cf. A203953, A202605. %K A203954 tabl,sign %O A203954 1,4 %A A203954 _Clark Kimberling_, Jan 08 2012