This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203956 #10 Jul 12 2012 00:39:54 %S A203956 1,-1,1,-6,1,1,-12,20,-1,1,-27,165,-35,1,1,-123,1255,-511,54,-1,1, %T A203956 -300,9266,-6003,1197,-82,1,1,-558,77523,-71564,20779,-2463,111,-1,1, %U A203956 -2841,688624,-817771,315489,-54393,4386,-144,1,1,-9093 %N A203956 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203955. %C A203956 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A203956 (For references regarding interlacing roots, see A202605.) %e A203956 Top of the array: %e A203956 1...-1 %e A203956 1...-6....1 %e A203956 1...-12....20....-1 %e A203956 1...-27....165...-35....1 %e A203956 1...-123...1255..-511...54...-1 %t A203956 t = {1, 2, 3}; t1 = Flatten[{t, t, t, t, t, t, t, t, t}]; %t A203956 f[k_] := t1[[k]]; %t A203956 U[n_] := %t A203956 NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[ %t A203956 Table[f[k], {k, 1, n}]]; %t A203956 L[n_] := Transpose[U[n]]; %t A203956 p[n_] := CharacteristicPolynomial[L[n].U[n], x]; %t A203956 c[n_] := CoefficientList[p[n], x] %t A203956 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A203956 Table[c[n], {n, 1, 12}] %t A203956 Flatten[%] (* A203956 *) %t A203956 TableForm[Table[c[n], {n, 1, 10}]] %Y A203956 Cf. A203955, A202605. %K A203956 tabl,sign %O A203956 1,4 %A A203956 _Clark Kimberling_, Jan 08 2012