A203982 Number of (n+1)X7 0..2 arrays with no 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.
6144, 186624, 5668704, 178855776, 5671161216, 180709558848, 5764846339584, 184042295652096, 5876808948959616, 187680079115373888, 5993929440264576384, 191431738781962474176, 6113912564634046252416, 195265725121889159876928
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..2..2..1..2..2....0..0..1..0..1..2..1....0..1..2..2..1..2..0 ..2..1..0..0..0..0..0....2..2..2..2..1..2..0....2..1..0..0..0..2..1 ..2..1..2..1..1..1..1....1..1..1..0..0..2..0....2..1..2..2..1..2..0 ..0..1..2..0..0..0..0....2..2..2..2..1..2..1....2..1..0..0..1..2..1 ..2..1..2..1..1..1..1....0..0..1..0..1..2..0....0..1..2..2..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 39*a(n-1) +117*a(n-2) -13419*a(n-3) +42120*a(n-4) +1465776*a(n-5) -7558272*a(n-6) -59591376*a(n-7) +389959596*a(n-8) +776691180*a(n-9) -7353962460*a(n-10) -230291100*a(n-11) +53356676400*a(n-12) -41452398000*a(n-13) -124357194000*a(n-14) +143489070000*a(n-15)
Comments