A203984 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.
6, 24, 24, 96, 144, 96, 384, 864, 864, 384, 1536, 5184, 7776, 5184, 1536, 6144, 31104, 69984, 69984, 31104, 6144, 24576, 186624, 629856, 956448, 629856, 186624, 24576, 98304, 1119744, 5668704, 13071456, 13071456, 5668704, 1119744, 98304, 393216
Offset: 1
Examples
Some solutions for n=4 k=3 ..0..0..0..0....0..0..0..0....0..0..1..1....0..1..0..0....0..1..2..1 ..1..1..1..2....1..2..1..2....1..2..2..0....2..2..2..1....2..1..2..0 ..0..0..0..2....1..2..1..0....0..0..1..1....0..0..0..0....2..0..2..1 ..1..1..1..1....0..2..1..2....1..2..2..0....1..1..1..1....1..1..2..1 ..0..2..2..2....1..2..1..2....1..0..1..1....2..2..2..2....2..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..220
Formula
Empirical for column k:
k=1: a(n) = 6*4^(n-1)
k=2: a(n) = 4*6^n
k=3: a(n) = 96*9^(n-1)
k=4: a(n) = 15*a(n-1) -270*a(n-3) +324*a(n-4)
k=5: a(n) = 25*a(n-1) -45*a(n-2) -963*a(n-3) +2025*a(n-4) +3645*a(n-5) -6561*a(n-6)
k=6: (order 15 recurrence)
k=7: (order 45 recurrence)
Comments