cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A203984 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order.

Original entry on oeis.org

6, 24, 24, 96, 144, 96, 384, 864, 864, 384, 1536, 5184, 7776, 5184, 1536, 6144, 31104, 69984, 69984, 31104, 6144, 24576, 186624, 629856, 956448, 629856, 186624, 24576, 98304, 1119744, 5668704, 13071456, 13071456, 5668704, 1119744, 98304, 393216
Offset: 1

Views

Author

R. H. Hardin Jan 09 2012

Keywords

Comments

Table starts
.....6......24........96.........384..........1536............6144
....24.....144.......864........5184.........31104..........186624
....96.....864......7776.......69984........629856.........5668704
...384....5184.....69984......956448......13071456.......178855776
..1536...31104....629856....13071456.....271918944......5671161216
..6144..186624...5668704...178855776....5671161216....180709558848
.24576.1119744..51018336..2447270496..118333620576...5764846339584
.98304.6718464.459165024.33489653472.2469841766784.184042295652096

Examples

			Some solutions for n=4 k=3
..0..0..0..0....0..0..0..0....0..0..1..1....0..1..0..0....0..1..2..1
..1..1..1..2....1..2..1..2....1..2..2..0....2..2..2..1....2..1..2..0
..0..0..0..2....1..2..1..0....0..0..1..1....0..0..0..0....2..0..2..1
..1..1..1..1....0..2..1..2....1..2..2..0....1..1..1..1....1..1..2..1
..0..2..2..2....1..2..1..2....1..0..1..1....2..2..2..2....2..0..0..1
		

Crossrefs

Column 1 is A002023(n-1)
Column 2 is A067411(n+1)

Formula

Empirical for column k:
k=1: a(n) = 6*4^(n-1)
k=2: a(n) = 4*6^n
k=3: a(n) = 96*9^(n-1)
k=4: a(n) = 15*a(n-1) -270*a(n-3) +324*a(n-4)
k=5: a(n) = 25*a(n-1) -45*a(n-2) -963*a(n-3) +2025*a(n-4) +3645*a(n-5) -6561*a(n-6)
k=6: (order 15 recurrence)
k=7: (order 45 recurrence)