This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203990 #17 Sep 08 2022 08:46:01 %S A203990 2,3,3,4,8,4,5,10,10,5,6,12,18,12,6,7,14,21,21,14,7,8,16,24,32,24,16, %T A203990 8,9,18,27,36,36,27,18,9,10,20,30,40,50,40,30,20,10,11,22,33,44,55,55, %U A203990 44,33,22,11,12,24,36,48,60,72,60,48,36,24,12,13,26,39,52,65,78,78,65,52,39,26,13 %N A203990 Symmetric matrix based on f(i,j) = (i+j)*min(i,j), by antidiagonals. %C A203990 This sequence represents the matrix M given by f(i,j) = (i+j)*min{i,j} for i >= 1 and j >= 1. %C A203990 See A203991 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %H A203990 G. C. Greubel, <a href="/A203990/b203990.txt">Table of n, a(n) for the first 100 rows, flattened</a> %e A203990 Northwest corner: %e A203990 2, 3, 4, 5, 6, 7 %e A203990 3, 8, 10, 12, 14, 16 %e A203990 4, 10, 18, 21, 24, 27 %e A203990 5, 12, 21, 32, 36, 40 %t A203990 (* First program *) %t A203990 f[i_, j_] := (i + j) Min[i, j]; %t A203990 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A203990 TableForm[m[6]] (* 6x6 principal submatrix *) %t A203990 Flatten[Table[f[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] (* A203990 *) %t A203990 p[n_] := CharacteristicPolynomial[m[n], x]; %t A203990 c[n_] := CoefficientList[p[n], x] %t A203990 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A203990 Table[c[n], {n, 1, 12}] %t A203990 Flatten[%] (* A203991 *) %t A203990 TableForm[Table[c[n], {n, 1, 10}]] %t A203990 (* Second program *) %t A203990 Table[(n+1)*Min[n-k+1, k], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Jul 23 2019 *) %o A203990 (PARI) for(n=1,15, for(k=1,n, print1((n+1)*min(n-k+1,k), ", "))) \\ _G. C. Greubel_, Jul 23 2019 %o A203990 (Magma) [(n+1)*Min(n-k+1,k): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Jul 23 2019 %o A203990 (Sage) [[(n+1)*min(n-k+1,k) for n in (1..n)] for n in (1..15)] # _G. C. Greubel_, Jul 23 2019 %o A203990 (GAP) Flat(List([1..15], n-> List([1..n], k-> (n+1)*Minimum(n-k+1,k) ))); # _G. C. Greubel_, Jul 23 2019 %Y A203990 Cf. A203991, A202453. %K A203990 nonn,tabl %O A203990 1,1 %A A203990 _Clark Kimberling_, Jan 09 2012