This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203992 #6 Jul 12 2012 00:39:54 %S A203992 1,-1,-3,-2,1,8,14,3,-1,-20,-56,-40,-4,1,48,184,224,90,5,-1,-112,-544, %T A203992 -936,-672,-175,-6,1,256,1504,3344,3480,1680,308,7,-1,-576,-3968, %U A203992 -10816,-14784,-10560,-3696,-504,-8,1,1280,10112,32640,55328 %N A203992 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of (A143182 in square format). %C A203992 Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences. %D A203992 (For references regarding interlacing roots, see A202605.) %e A203992 Top of the array: %e A203992 1... -1 %e A203992 -3... -1.... 1 %e A203992 8.... 14... 3... -1 %e A203992 -20.. -56.. -40.. -4... 1 %t A203992 f[i_, j_] := Max[i - j + 1, j - i + 1]; %t A203992 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A203992 TableForm[m[6]] (* 6x6 principal submatrix *) %t A203992 Flatten[Table[f[i, n + 1 - i], %t A203992 {n, 1, 12}, {i, 1, n}]] (* A143182 in square format *) %t A203992 p[n_] := CharacteristicPolynomial[m[n], x]; %t A203992 c[n_] := CoefficientList[p[n], x] %t A203992 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A203992 Table[c[n], {n, 1, 12}] %t A203992 Flatten[%] (* A203992 *) %t A203992 TableForm[Table[c[n], {n, 1, 10}]] %Y A203992 Cf. A143182, A202605. %K A203992 tabl,sign %O A203992 1,3 %A A203992 _Clark Kimberling_, Jan 09 2012