This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A203994 #13 Sep 08 2022 08:46:01 %S A203994 1,0,0,-1,1,-1,-2,0,0,-2,-3,-1,1,-1,-3,-4,-2,0,0,-2,-4,-5,-3,-1,1,-1, %T A203994 -3,-5,-6,-4,-2,0,0,-2,-4,-6,-7,-5,-3,-1,1,-1,-3,-5,-7,-8,-6,-4,-2,0, %U A203994 0,-2,-4,-6,-8,-9,-7,-5,-3,-1,1,-1,-3,-5,-7,-9 %N A203994 Symmetric matrix based on f(i,j) = (i+j)*min{i,j}, by antidiagonals. %C A203994 A203994 represents the matrix M given by f(i,j) = min(i-j+1,j-i+1) for i >= 1 and j >= 1. See A203995 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %H A203994 G. C. Greubel, <a href="/A203994/b203994.txt">Antidiagonal rows n = 1..100, flattened</a> %e A203994 Northwest corner: %e A203994 1 0 -1 -2 -3 %e A203994 0 1 0 -1 -2 %e A203994 -1 0 1 0 -1 %e A203994 2 -1 0 1 0 %t A203994 (* First program *) %t A203994 f[i_, j_] := Min[i - j + 1, j - i + 1]; %t A203994 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A203994 TableForm[m[6]] (* 6 X 6 principal submatrix *) %t A203994 Flatten[Table[f[i, n + 1 - i], %t A203994 {n, 1, 12}, {i, 1, n}]] (* A203994 *) %t A203994 p[n_] := CharacteristicPolynomial[m[n], x]; %t A203994 c[n_] := CoefficientList[p[n], x] %t A203994 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A203994 Table[c[n], {n, 1, 12}] %t A203994 Flatten[%] (* A203995 *) %t A203994 TableForm[Table[c[n], {n, 1, 10}]] %t A203994 (* Second program *) %t A203994 Table[Min[2*k-n, n-2*k+2], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Jul 23 2019 *) %o A203994 (PARI) for(n=1,15, for(k=1,n, print1(min(2*k-n, n-2*k+2), ", "))) \\ _G. C. Greubel_, Jul 23 2019 %o A203994 (Magma) [Min(2*k-n, n-2*k+2): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Jul 23 2019 %o A203994 (Sage) [[min(2*k-n, n-2*k+2) for k in (1..n)] for n in (1..15)] # _G. C. Greubel_, Jul 23 2019 %o A203994 (GAP) Flat(List([1..15], n-> List([1..n], k-> Minimum(2*k-n, n-2*k+2) ))); # _G. C. Greubel_, Jul 23 2019 %Y A203994 Cf. A203995, A202453. %K A203994 tabl,sign %O A203994 1,7 %A A203994 _Clark Kimberling_, Jan 09 2012